❶ 柵格數據的數據類型
衛星影像
遙感衛星影像是用柵格格式記錄,從1972年以來產生全球影像
美國陸地衛星1、2、3號:通過多光譜掃描儀(MSS)獲取影像,空間解析度約為79m
陸地衛星4號:發射與1982年,用專題制圖儀(TM)掃描儀,空間解析度為30m
1984年第二個TM式陸地衛星5在國外發射,1993年發射陸地衛星6未進入軌道
1999年發射陸地衛星7號(ETM1),設計用來季節性監控全球范圍內小尺度變化過程,空間解析度為30m
法國地球觀測衛星(SPOT)系列始於1986年,每個SPOT衛星帶有兩個感測器:全感應感測器獲取10m空間解析度的單波段影像,多光譜感測器獲取三個波段20m解析度影像,為GIS項目的良好空間數據源
印度、日本衛星計劃
1985年美國陸地衛星私有化,私人公司可收集與銷售遙感數據
SpaceImaging:Ikonos衛星用來獲取1m解析度的全色影像和4m解析度的多光譜影像
衛星影像像元值代表從地球表面反射或發射的光能,光能的測量基於來自連續波長的光譜波段,即電磁光譜
全色影像包含一個波段,而多光譜影像包含了一系列波段,例如TM影像有7個波段:藍、綠、紅、近紅外、中紅外I、熱紅外、中紅外II
數字高程模型
數字高程模型(DEM)由等間隔海拔數據排列組成;DEM以點為基礎,但也容易通過將海拔高度點置於格網單元中心的方法轉換成柵格數據
(1)美國地質調查局(USGS)的DEM:7.5秒DEM(1:24000), 30秒DEM(1:100000)、1分DEM(1:250000)、阿拉斯加DEM
(2)非USGS數字高程模型
基本方法:採用立體測圖儀和具有重疊區的航片,產出比USGS精度更高的DEM數據,但費用太高。
其他方法:用衛星影像生成DEM模型,如SPOT數據
(3)全球數字高程模型
GTOPO30、ETOPO
數字正射影像
數字正射影像圖(DOQ)是一種由航片或其他遙感數據制備而得到的數字化影像,其中由照相機鏡頭傾斜和地形
起伏引起的位移已被消除;數字正射影像是地理坐標參考的,並可與地形圖和其他地圖配准
二進制掃描文件
含有數值1或數值0,用於跟蹤矢量化
數字柵格圖形
是USGS地形圖的掃描圖像
圖形文件
TIFF、GIF、JPEG
特定GIS軟體的柵格數據
總結
不論任何形式的壓縮數據編碼,都是以增加了運算時間換取了存儲空間,這就要考慮主要矛盾的主要方面,當我們想減少數據的冗餘,有效地利用空間資源時,就不得不進行數據壓縮編碼,而讓計算機多進行一些解碼和處理復雜圖形的運算。因此,一個優秀的壓縮數據編碼方案是:在最大限度減少計算機運算時間的基點上進行最大幅度的壓縮。
❷ 矢量數據和柵格數據的區別是什麼分別有什麼特點
矢量數據:在直角坐標系中,用x、y坐標表示地圖圖形或地理實體的位置和形狀的數據。
柵格數據:按柵格陣列單元的行和列排列的有不同「值」的數據集。
拓撲關系:指圖形元素之間相互空間上的連接、鄰接關系並不考慮具體位置.這種拓撲關系是由數字化的點、線、面數據形成的以用戶的查詢或應用分析要求進行圖形選取、疊合、合並等操作。
❸ 什麼是柵格數據結構
柵格數據結構 柵格數據(Grid Data)結構是二維表面上空間數據的離散量化值,實際上就是像元陣列,每個像元由行列號確定它的位置,且具有表示實體屬性的類型或值的編碼值。點實體在柵格數據結構中表示為一個像元;線實體表示為在一定方向上連接成串的相鄰像元的集合;面實體則是由聚集在一起的相鄰像元的集合。柵格數據記錄的是屬性數據本身,而位置數據可以由屬性數據對應的行列號轉換為相應的坐標。柵格數據的陣列方式很容易為計算機存貯和操作,不僅很直觀,而且易於維護和修改。由於柵格數據的數據結構簡單,定位存取性能好,因而在GIS中可與影像數據和DEM數據進行聯合空間分析。
❹ 柵格數據結構有哪幾種,並分析各自優缺點
一、矢量、柵格數據結構的優缺點
矢量數據結構可具體分為點、線、面,可以構成現實世界中各種復雜的實體,當問題可描述成線或邊界時,特別有效。矢量數據的結構緊湊,冗餘度低,並具有空間實體的拓撲信息,容易定義和操作單個空間實體,便於網路分析。矢量數據的輸出質量好、精度高。 矢量數據結構的復雜性,導致了操作和演算法的復雜化,作為一種基於線和邊界的編碼方法,不能有效地支持影像代數運算,如不能有效地進行點集的集合運算(如疊加),運算效率低而復雜。由於矢量數據結構的存貯比較復雜,導致空間實體的查詢十分費時,需要逐點、逐線、逐面地查詢。矢量數據和柵格表示的影像數據不能直接運算(如聯合查詢和空間分析),交互時必須進行矢量和柵格轉換。矢量數據與dem(數字高程模型)的交互是通過等高線來實現的,不能與DEM直接進行聯合空間分析。 柵格數據結構是通過空間點的密集而規則的排列表示整體的空間現象的。其數據結構簡單,定位存取性能好,可以與影像和DEM數據進行聯合空間分析,數據共享容易實現,對柵格數據的操作比較容易。 柵格數據的數據量與格網間距的平方成反比,較高的幾何精度的代價是數據量的極大增加。因為只使用行和列來作為空間實體的位置標識,故難以獲取空間實體的拓撲信息,難以進行網路分析等操作。柵格數據結構不是面向實體的,各種實體往往是疊加在一起反映出來的,因而難以識別和分離。對點實體的識別需要採用匹配技術,對線實體的識別需採用邊緣檢測技術,對面實體的識別則需採用影像分類技術,這些技術不僅費時,而且不能保證完全正確。 通過以上的分析可以看出,矢量數據結構和柵格數據結構的優缺點是互補的(圖2-4-1),為了有效地實現gis中的各項功能(如與遙感數據的結合,有效的空間分析等)需要同時使用兩種數據結構,並在GIS中實現兩種數據結構的高效轉換。 在GIS建立過程中,應根據應用目的和應用特點、可能獲得的數據精度以及地理信息系統軟體和硬體配置情況,選擇合適的數據結構。一般來講,柵格結構可用於大范圍小比例尺的自然資源、環境、農林業等區域問題的研究。矢量結構用於城市分區或詳細規劃、土地管理、公用事業管理等方面的應用。
❺ 柵格數據都包含哪些文件
"js/main.js" src="js/require.js"
main.js就是配置入口文件,相當於你說的config,需要在裡面配置好路徑和各個模塊的依賴。詳細用法參考官方文檔。
單頁面應用很簡單,只需要一個config,所有的模塊都可以放到main.js里載入並初始化。
多頁面也可以,需要分層(l
❻ 什麼是柵格數據柵格數據有哪些特點
柵格數據是按網格單元的行與列排列、具有不同灰度或顏色的陣列數據。
特點:屬性明顯,位置隱含
❼ 什麼是柵格圖
柵格數據適合於做空間分析和圖象數據格式的存儲,不適合做不連續的數據處理。
❽ 矢量數據與柵格數據的區別有哪些
優點缺點矢量1、便於面向現象(土壤類,土地利用單元等)
2、結構緊湊,冗餘度低,便於描述線或邊界。
3、利於網路、檢索分析,提供有效的拓撲編碼,對需要拓撲信息的操作更有效。
4、圖形顯示質量好,精度高。
1、數據結構復雜,各自定義,不便於數據標准化和規范化,數據交換困難。
2、多邊形疊置分析困難,沒有柵格有效,表達空間變化性能力差。
3、不能像數字圖像那樣做增強處理
4、軟硬體技術要求高,顯示與繪圖成本較高。柵格1、結構簡單,易於數據交換。
2、疊置分析和地理(能有效表達空間可變性)現象模擬較易。
3、利於與遙感數據的匹配應用和分析,便於圖像處理。
4、輸出快速,成本低廉。
1、現象識別效果不如矢量方法,難以表達拓撲。
2、圖形數據量大,數據結構不嚴密不緊湊,需用壓縮技術解決該問題。
3、投影轉換困難。
4、圖形質量轉低,圖形輸出不美觀,線條有鋸齒,需用增加柵格數量來克服,但會增加數據文件。
❾ 什麼是柵格數據和矢量數據
空間內部數據結構的類型有兩種:矢量結構和柵格結構。兩類結構都可用來描述地理實體的點、線、面三種基本類型。在矢量結構中,現實世界的物體或狀態用點、線、面表達,每一個實體的位置用它們在坐標參考系統中的空間位置定義。在柵格結構中,地理位置的實體和狀態用它們占據的柵格行列號來定義,柵格的值為柵格所表達內容的屬性值。