❶ 大數據主要學習什麼呢
大數據主要學習的東西有6個方面:
第一階段
JavaSE基礎核心
第二階段
資料庫關鍵技術
第三階段
大數據基礎核心
第四階段
Spark生態體系框架&大數據高薪精選項目
第五階段
Spark生態體系框架&企業無縫對接項目
第六階段
Flink流式數據處理框架
❷ 大數據專業主要學什麼
近兩年來,互聯網的發展迅速,相對應的帶動了很多行業的發展,大數據作為新興行業之一,半年來的人才需求在也是居高不下。
通過持續的觀察前程無憂與智聯招聘需求,在2016年6月大數據相關職位需求量,北京為21,511+個,穩居榜首,職位量佔比高達25.1%,上海與深圳雖然拿下第二與第三,但是數量相差甚遠。前十名也全部都是一二線城市,由此可以得出,大數據的發展,當前最活躍於偏向於發達的一線城市以及沿海地區。
從各行業發布的數量上來看,以計算機軟體職位需求量最大,互聯網/電子商務、IT服務/系統/數據/維護,緊隨其後,並且三者相差不大,由此可以看出,計算機、互聯網、IT類的職位需求的空缺一直很大,對於很多求職者而言,這是一個非常大的機遇。排名前四的與第五的數據相差很大,一方面是傳統崗位數量的飽和,另一方面也就是新興行業人才的稀缺。同時已經可以看出大數據在咨詢、房地產、教育等行業的應用已經出現一個小的趨勢,未來這些行業或將出現巨大的需求(或許這以一切的數據現象反映了當前國內的經濟現狀)。
從薪資水平上來看,5-8K是起步,20K以上的在2015年僅佔2.4%,而在2016年卻是增長到了21.5%%,由此可以看出,大數據其實也就是這一年始真正的發展。不論是平均最高月薪還是平均最低月薪,2016年在2015年的基礎上都有明顯的增長。平均月薪的增長意味著大數據進入了越來越多人的視線,專業人才難求,平均月薪瘋長,大數據不火都不行。
目前大數據培訓相對其他培訓項目要好就業,因為其他語言還是技能培訓都是有一定的市場基礎的,而大數據在最近兩年才大力發展,並且在各領域蔓延,因此所產生的人才缺口巨大,而在企業中真正對大數據技能比較強力的技術人才,又特別的少;
應用越來越廣,技術人才卻產生較慢,剛培訓的人員,只能適應基本的軟體操作和理論基礎;還達不到企業要完成復雜業務的技術需求;所以培訓入門快,拿薪資快,但只是一時,進入企業,不努力學習是跟不上發展與用人需求的。
大數據領域有三個大的技術方向,這些不同的技術方向,對應企業的哪些招聘崗位?
大數據技術與應用專業市場需求旺盛,對應崗位有大數據開發工程師、爬蟲工程師、數據分析師、數據科學家、數據挖掘工程師、機器學習工程師等;
大數據入門月薪已經達到了8K以上,工作1年月薪可達到1.2W以上,具有2-3年工作經驗的人才年薪可以達到30萬—50萬,一般需要大數據處理的公司基本上都是大公司,所以學習大數據專業也是進大公司的捷徑。
1. Hadoop大數據開發方向市場需求旺盛,大數據培訓的主體,目前IT培訓機構的重點對應崗位:大數據開發工程師、爬蟲工程師、數據分析師等2. 數據挖掘、數據分析&機器學習方向學習起點高、難度大,市面上只有很少的培訓機構在做。對應崗位:數據科學家、數據挖掘工程師、機器學習工程師等3. 大數據運維&雲計算方向市場需求中等,更偏向於Linux、雲計算學科對應崗位:大數據運維工程師
當下,大數據的趨勢已逐步從概念走向落地,而在IT人跟隨大數據浪潮的轉型中,各大企業對大數據高端人才的需求也越來越緊迫。這一趨勢,也給想要從事大數據方面工作的人員提供了難得的職業機遇。
❸ 大數據主要學什麼
大數據分析挖掘與處理、移動開發與架構、軟體開發、雲計算等前沿技術等。
主修課程:面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學、Python編程、JAVA編程、資料庫技術、Web開發、Linux操作系統、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等。
旨在培養學生系統掌握數據管理及數據挖掘方法,成為具備大數據分析處理、數據倉庫管理、大數據平台綜合部署、大數據平台應用軟體開發和數據產品的可視化展現與分析能力的高級專業大數據技術人才。
(3)大數據要學什麼擴展閱讀:
越來越多的行業對大數據應用持樂觀的態度,大數據或者相關數據分析解決方案的使用在互聯網行業,比如網路、騰訊、淘寶、新浪等公司已經成為標准。而像電信、金融、能源這些傳統行業,越來越多的用戶開始嘗試或者考慮怎麼樣使用大數據解決方案,來提升自己的業務水平。
在「大數據」背景之下,精通「大數據」的專業人才將成為企業最重要的業務角色,「大數據」從業人員薪酬持續增長,人才缺口巨大。
❹ 大數據專業都需要學習哪些軟體啊
大數據需要學習的軟體有:SQL資料庫、PythonorR軟體、Excel軟體、SPSS軟體。等這樣的一些必要的軟體。
❺ Java大數據需要學習哪些內容
首先明確,java大數據通常指的是採用Java語言來完成一些大數據領域的開發任務,整體的學習內容涉及到三大塊,其一是Java語言基礎,其二是大數據平台基礎,其三是場景開發基礎。
Java開發包括了Java基礎,JavaWeb和JavaEE三大塊。java可以說是大數據最基礎的編程語言,一是因為大數據的本質無非就是海量數據的計算,查詢與存儲,後台開發很容易接觸到大數據量存取的應用場景。java語言基礎部分的學習內容相對比較明確,由於Java語言本身的技術體系已經比較成熟了,所以學習過程也會相對比較順利。JavaWeb開發不僅涉及到後端開發知識,還涉及到前端開發知識,整體的知識量還是比較大的,而且在學習的過程中,需要完成大量的實驗。
大數據開發包括Java基礎,MySQL基礎,Hadoop(HDFS,MapRece,Yarn,Hive,Hbase,Zookeeper,Flume,Sqoop等),Scala語言(類似於Java,Spark階段使用),Spark(SparkSQL,SparkStreaming,SparkCore等)。
學習Java大數據一定離不開具體的場景,這裡面的場景不僅指硬體場景(數據中心),還需要有行業場景支持,所以學習Java大數據通常都會選擇一個行業作為切入點,比如金融行業、醫療行業、教育行業等等。初學者可以考慮在實習崗位上來完成這個階段的學習任務
總體上來說,Java大數據的學習內容是比較多的,而且也具有一定的難度。
❻ 學大數據需要具備什麼基礎
第一、計算機基礎知識。計算機基礎知識涉及到三大塊內容,包括操作系統、編程語言和計算機網路,其中操作系統要重點學習一下Linux操作系統,編程語言可以選擇Java或者Python。
如果要從事大數據開發,應該重點關注一下Java語言,而如果要從事大數據分析,可以重點關注一下Python語言。計算機網路知識對於大數據從業者來說也比較重要,要了解基本的網路通信過程,涉及到網路通信層次結構和安全的相關內容。
第二、資料庫知識。資料庫知識是學習大數據相關技術的重要基礎,大數據的技術體系有兩大基礎,一部分是分布式存儲,另一部分是分布式計算,所以存儲對於大數據技術體系有重要的意義。
初學者可以從Sql語言開始學起,掌握關系型資料庫知識對於學習大數據存儲依然有比較重要的意義。另外,在大數據時代,關系型資料庫依然有大量的應用場景。
第三、數學和統計學知識。從學科的角度來看,大數據涉及到三大學科基礎,分別是數學、統計學和計算機,所以數學和統計學知識對於大數據從業者還是比較重要的。
從大數據崗位的要求來看,大數據分析崗位(演算法)對於數學和統計學知識的要求程度比較高,大數據開發和大數據運維則稍微差一些,所以對於數學基礎比較薄弱的初學者來說,可以考慮向大數據開發和大數據運維方向發展。
大數據的價值體現在以下幾個方面:
(1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;
(2)做小而美模式的中小微企業可以利用大數據做服務轉型;
(3)面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。
❼ 大數據學習有什麼要求
從通常的情況下來講,要求大數據學習最好是理工科基礎,數學比較好,然後邏輯思維比較強。但是這些都是從比較官方的角度來進行闡述的,最重要的是你需要對它有濃厚的興趣有強烈的好奇心。
從現在企業的要求來看,至少要專科以上的學歷,並且熟悉JAVA、Hadoop、HBase、Flink等等編程語言以及系統。大數據開發學習有一定難度,零基礎入門首先要學習Java語言打基礎,一般而言,Java學習SE、EE,需要一段時間;然後進入大數據技術體系的學習,主要學習Hadoop、Spark、Storm等。除此之外,學習大數據開發需要學習的內容包括三大部分,分別是:大數據基礎知識、大數據平台知識、大數據場景應用,大數據基礎知識有三個主要部分:數學、統計學和計算機;大數據平台知識:是大數據開發的基礎,往往以搭建Hadoop、Spark平台為主。
❽ 入門大數據需要學習什麼內容
主要學習一些Java語言的概念,如字元、流程式控制制、面向對象、進程線程、枚舉反射等,學習MySQL資料庫的安裝卸載及相關操作,學習JDBC的實現原理以及Linux基礎知識,是大數據剛入門階段。
主要講解CAP理論、數據分布方式、一致性、2PC和3PC、大數據集成架構。涉及的知識點有Consistency一致性、Availability可用性、Partition
tolerance分區容忍性、數據量分布、2PC流程、3PC流程、哈希方式、一致性哈希等。
主要講解協調服務ZK(1T)、數據存儲hdfs(2T)、數據存儲alluxio(1T)、數據採集flume、數據採集logstash、數據同步Sqoop(0.5T)、數據同步datax(0.5T)、數據同步mysql-binlog(1T)、計算模型MR與DAG(1T)、hive(5T)、Impala(1T)、任務調度Azkaban、任務調度airflow等。
主要講解數倉倉庫的歷史背景、離線數倉項目-伴我汽車(5T)架構技術解析、多維數據模型處理kylin(3.5T)部署安裝、離線數倉項目-伴我汽車升級後加入kylin進行多維分析等;
主要講解計算引擎、scala語言、spark、數據存儲hbase、redis、ku,並通過某p2p平台項目實現spark多數據源讀寫。
主要講解數據通道Kafka、實時數倉druid、流式數據處理flink、SparkStreaming,並通過講解某交通大數讓你可以將知識點融會貫通。
主要講解elasticsearch,包括全文搜索技術、ES安裝操作、index、創建索引、增刪改查、索引、映射、過濾等。
主要講解數據標准、數據分類、數據建模、圖存儲與查詢、元數據、血緣與數據質量、Hive Hook、Spark Listener等。
主要講解Superset、Graphna兩大技術,包括基本簡介、安裝、數據源創建、表操作以及數據探索分析。
主要講解機器學習中的數學體系、Spark Mlib機器學習演算法庫、Python scikit-learn機器學習演算法庫、機器學習結合大數據項目。
❾ 學習大數據需要什麼基礎
一、計算機編碼能力
實際開發能力和大規模的數據處理能力是作為大數據工程師的一些必備要素。舉例來說,現在人們在社交網路上所產生的許多記錄都是非結構化的數據,如何從這些毫無頭緒的文字、語音、圖像甚至視頻中拾取有意義的信息就需要大數據工程師親自挖掘。
二、數學及統計學相關的背景
國內BAT為代表的大公司,對於大數據工程師的要求都是希望是統計學和數學背景的碩士或博士學歷。缺乏理論背景的數據工作者,按照不同的數據模型和演算法總能捯飭出一些結果來,但如果你不知道那代表什麼,就並不是真正有意義的結果,並且那樣的結果還容易誤導你。只有具備一定的理論知識,才能理解模型、復用模型甚至創新模型,來解決實際問題。
三、特定應用領域或行業的知識
大數據工程師這個角色很重要的一點是,不能脫離市場,因為大數據只有和特定領域的應用結合起來才能產生價值。所以,在某個或多個垂直行業的經歷能為應聘者積累對行業的認知,對於之後成為大數據工程師有很大幫助。