① 數據挖掘的應用場景都有哪些
1.教育領域
數據挖掘技術的應用已經滲入到教育教學的各個方面,如支持教育科學決策、實施個性化教育、對學生的學業成績進行評估等。數據挖掘的實際應用逐漸突破了傳統的教學模式,改善了教學效果,促進了教學質量的提升。
2.風控領域
數據挖掘作為深層次的數據信息分析方法,能夠對各種因素之間隱藏的內在聯系進行全面分析。目前在風控領域可應用於信貸風險評估、交易欺詐識別、黑產防範及消費信貸四個方面,通過風險預警,可以讓風險管理者提前做好准備,從而為決策提供參考信息。
3.醫療領域
目前,醫院已經積累了涵蓋患者、費用、葯物以及相關管理信息等數據資源,數量龐大且類型復雜。數據挖掘技術則能夠幫助醫院從中提取出有價值的信息,滿足醫療服務各個環節的需求。其在醫療成本的預測和控制、慢性疾病的預警、醫療信息質量管理等方面,都起到了明顯的正向作用。
關於數據挖掘的應用場景都有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
② 什麼是數據挖掘
數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
數據挖掘流程:
定義問題:清晰地定義出業務問題,確定數據挖掘的目的。
數據准備:數據准備包括:選擇數據–在大型資料庫和數據倉庫目標中 提取數據挖掘的目標數據集;數據預處理–進行數據再加工,包括檢查數據的完整性及數據的一致性、去雜訊,填補丟失的域,刪除無效數據等。
數據挖掘:根據數據功能的類型和和數據的特點選擇相應的演算法,在凈化和轉換過的數據集上進行數據挖掘。
結果分析:對數據挖掘的結果進行解釋和評價,轉換成為能夠最終被用戶理解的知識。
③ 數據挖掘應用在哪些領域
數據挖掘可以應用在金融、醫療保健、市場業、零售業、製造業、司法、工程和科學、保險業等領域。
數據挖掘,又譯為資料探勘、數據采礦。它是資料庫知識發現中的一個步驟。數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統和模式識別等諸多方法來實現上述目標。
近年來,數據挖掘引起了信息產業界的極大關注,其主要原因是存在大量數據,可以廣泛使用,並且迫切需要將這些數據轉換成有用的信息和知識。獲取的信息和知識可以廣泛用於各種應用,包括商務管理,生產控制,市場分析,工程設計和科學探索等。
④ 數據挖掘是做什麼的
數據挖掘又譯為資料探勘、數據采礦。是一種透過數理模式來分析企業內儲存的大量資料,以找出不同的客戶或市場劃分,分析出消費者喜好和行為的方法。它是資料庫知識發現中的一個步驟。數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。主要有數據准備、規律尋找和規律表示3個步驟。數據挖掘的任務有關聯分析、聚類分析、分類分析、異常分析、特異群組分析和演變分析等。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。
是一個用數據發現問題、解決問題的學科。
通常通過對數據的探索、處理、分析或建模實現。
我們可以看到數據挖掘具有以下幾個特點:
基於大量數據:並非說小數據量上就不可以進行挖掘,實際上大多數數據挖掘的演算法都可以在小數據量上運行並得到結果。但是,一方面過小的數據量完全可以通過人工分析來總結規律,另一方面來說,小數據量常常無法反映出真實世界中的普遍特性。
非平凡性:所謂非平凡,指的是挖掘出來的知識應該是不簡單的,絕不能是類似某著名體育評論員所說的「經過我的計算,我發現了一個有趣的現象,到本場比賽結束 為止,這屆世界盃的進球數和失球數是一樣的。非常的巧合!」那種知識。這點看起來勿庸贅言,但是很多不懂業務知識的數據挖掘新手卻常常犯這種錯誤。
隱含性:數據挖掘是要發現深藏在數據內部的知識,而不是那些直接浮現在數據表面的信息。常用的BI工具,例如報表和OLAP,完全可以讓用戶找出這些信息。
新奇性:挖掘出來的知識應該是以前未知的,否則只不過是驗證了業務專家的經驗而已。只有全新的知識,才可以幫助企業獲得進一步的洞察力。
價值性:挖掘的結果必須能給企業帶來直接的或間接的效益。有人說數據挖掘只是「屠龍之技」,看起來神乎其神,卻什麼用處也沒有。這只是一種誤解,不可否認的 是在一些數據挖掘項目中,或者因為缺乏明確的業務目標,或者因為數據質量的不足,或者因為人們對改變業務流程的抵制,或者因為挖掘人員的經驗不足,都會導 致效果不佳甚至完全沒有效果。但大量的成功案例也在證明,數據挖掘的確可以變成提升效益的利器
⑤ 什麼是數據挖掘,簡述其作用和應用。
數據挖掘是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。
數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統和模式識別等諸多方法來實現上述目標。
人們迫切希望能對海量數據進行深入分析,發現並提取隱藏在其中的信息,以更好地利用這些數據,正是在這樣的條件下,數據挖掘技術應運而生。
數據挖掘有很多合法的用途,例如可以在患者群的資料庫中查出某葯物和其副作用的關系。這種關系可能在1000人中也不會出現一例,但葯物學相關的項目就可以運用此方法減少對葯物有不良反應的病人數量,還有可能挽救生命。
目前數據挖掘的演算法主要包括神經網路法、決策樹法、遺傳演算法、粗糙集法、模糊集法、關聯規則法等。
根據信息存儲格式,用於挖掘的對象有關系資料庫、面向對象資料庫、數據倉庫、文本數據源、多媒體資料庫、空間資料庫、時態資料庫、異質資料庫以及internet等。
數據挖掘過程是一個反復循環的過程,每一個步驟如果沒有達到預期目標,都需要回到前面的步驟,重新調整並執行。不是每件數據挖掘的工作都需要這里列出的每一步。
⑥ 數據挖掘的應用有哪些
數據挖掘目前在中國的尚未流行開,猶如屠龍之技;數據挖掘本身融合了統計學、資料庫、機器學習、模式識別、知識發現等學科,並不是新的技術。
數據挖掘之所以能夠應用不是因為演算法,演算法是以前就有的。數據挖掘應用的原因是大數據和雲計算。比如阿爾法狗的後台有上千台計算機同時運行神經網路演算法;
數據初期的准備工作,也稱Data Warehousing。通常占整個數據挖掘項目工作量的70%左右。在前期你需要做大量的數據清洗和欄位擴充的工作。數據挖掘和報告展現只佔30%左右;
數據挖掘技術更適合業務人員學習(相比技術人員學習業務來的更高效)。
目前國內的數據挖掘人員工作領域大致可分為三類
1)數據分析師:在擁有行業數據的電商、金融、電信、咨詢等行業里做業務咨詢,商務智能,出分析報告;
2)數據挖掘工程師:在多媒體、電商、搜索、社交等大數據相關行業里做機器學習演算法實現和分析;
3)科學研究方向:在高校、科研單位、企業研究院等高大上科研機構研究新演算法效率改進及未來應用。
你自己的定位與學習
基於以上的介紹,你大概可以明確你需要努力的方向。如果你不是致力於科研方向,那麼你需要掌握如下的技能:
1. 需要理解主流機器學習演算法的原理和應用。按照需要解決的問題,主要分為三大類,見下圖:
2. 需要熟悉至少一門編程語言。如R,Python,SPSS Modeler,SAS,WEKA等。
關於軟體,有三個原則:只要能達到目標的軟體就是好軟體;你研究的領域啥軟體好用就用啥軟體;不要妄想用一個軟體解決所有問題。
3. 需要理解資料庫基本原理,能夠熟練操作至少一種資料庫,如MySQL,OracelDB2等。
4. 熟悉數據挖掘常見的運用場景。如客戶生命周期管理、客戶畫像和客戶分群、客戶價值預測模型構建、推薦系統設計等,這些需要依託於不同行業。
5.經典圖書推薦:《數據挖掘:概念與技術》、《數據挖掘導論》、《機器學習實戰》、《資料庫系統概論》、《R語言實戰》。
⑦ 什麼是數據挖掘數據挖掘怎麼做啊
數據挖掘(Data Mining)是指通過大量數據集進行分類的自動化過程,以通過數據分析來識別趨勢和模式,建立關系來解決業務問題。換句話說,數據挖掘是從大量的、不完全的、有雜訊的、模糊的、隨機的數據中提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
原則上講,數據挖掘可以應用於任何類型的信息存儲庫及瞬態數據(如數據流),如資料庫、數據倉庫、數據集市、事務資料庫、空間資料庫(如地圖等)、工程設計數據(如建築設計等)、多媒體數據(文本、圖像、視頻、音頻)、網路、數據流、時間序列資料庫等。也正因如此,數據挖掘存在以下特點:
(1)數據集大且不完整
數據挖掘所需要的數據集是很大的,只有數據集越大,得到的規律才能越貼近於正確的實際的規律,結果也才越准確。除此以外,數據往往都是不完整的。
(2)不準確性
數據挖掘存在不準確性,主要是由雜訊數據造成的。比如在商業中用戶可能會提供假數據;在工廠環境中,正常的數據往往會收到電磁或者是輻射干擾,而出現超出正常值的情況。這些不正常的絕對不可能出現的數據,就叫做雜訊,它們會導致數據挖掘存在不準確性。
(3)模糊的和隨機的
數據挖掘是模糊的和隨機的。這里的模糊可以和不準確性相關聯。由於數據不準確導致只能在大體上對數據進行一個整體的觀察,或者由於涉及到隱私信息無法獲知到具體的一些內容,這個時候如果想要做相關的分析操作,就只能在大體上做一些分析,無法精確進行判斷。
而數據的隨機性有兩個解釋,一個是獲取的數據隨機;我們無法得知用戶填寫的到底是什麼內容。第二個是分析結果隨機。數據交給機器進行判斷和學習,那麼一切的操作都屬於是灰箱操作。
⑧ 數據挖掘的應用領域有哪些
數據挖掘的應用非常廣泛,只要該產業有分析價值與需求的資料庫,皆可利用數據挖掘工具進行有目的的發掘分析。常見的應用案例多發生在零售業、製造業、財務金融保險、通訊及醫療服務:
(1)商場從顧客購買商品中發現一定的關聯規則,提供打折、購物券等促銷手段,提高銷售額;
(2)保險公司通過數據挖掘建立預測模型,辨別出可能的欺詐行為,避免道德風險,減少成本,提高利潤;
(3)在製造業中,半導體的生產和測試中都產生大量的數據,就必須對這些數據進行分析,找出存在的問題,提高質量;
(4)電子商務的作用越來越大,可以用數據挖掘對網站進行分析,識別用戶的行為模式,保留客戶,提供個性化服務,優化網站設計;
一些公司運用數據挖掘的成功案例,顯示了數據挖掘的強大生命力:
美國AutoTrader是世界上最大的汽車銷售站點,每天都會有大量的用戶對網站上的信息點擊,尋求信息,其運用了SAS軟體進行數據挖掘,每天對數據進行分析,找出用戶的訪問模式,對產品的喜歡程度進行判斷,並設特定服務,取得了成功。
Reuteres是世界著名的金融信息服務公司,其利用的數據大都是外部的數據,這樣數據的質量就是公司生存的關鍵所在,必須從數據中檢測出錯誤的成分。Reuteres用SPSS的數據挖掘工具SPSS/Clementine,建立數據挖掘模型,極大地提高了錯誤的檢測,保證了信息的正確和權威性。
Bass Export是世界最大的啤酒進出口商之一,在海外80多個市場從事交易,每個星期傳送23000份定單,這就需要了解每個客戶的習慣,如品牌的喜好等,Bass Export用IBM的Intelligent Miner很好的解決了上述問題。