A. 如何利用python進行數據分析
利用python進行數據分析
鏈接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ
本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。
B. python怎麼分析數據
python怎麼分析數據?
在不同的場景下通常可以採用不同的數據分析方式,比如對於大部分職場人來說,Excel可以滿足大部分數據分析場景,當數據量比較大的時候可以通過學習資料庫知識來完成數據分析任務,對於更復雜的數據分析場景可以通過BI工具來完成數據分析。通過工具進行數據分析一方面比較便捷,另一方面也比較容易掌握。
但是針對於更加開放的數據分析場景時,就需要通過編程的方式來進行數據分析了,比如通過機器學習的方式進行數據分析,而Python語言在機器學習領域有廣泛的應用。採用機器學習的方式進行數據分析需要經過五個步驟,分別是數據准粗渣宴備、演算法設計、岩銀演算法訓練、演算法驗證和演算法應用。
採用機器學習進行數據分析時,首先要了解一下常見的演算法,比如knn、決策樹、支持向量機、樸素貝葉斯等等,這些演算法都是機器學習領域非常常見的演算法,也具有比較廣泛的應用場景。當然,學習這些演算法也需要具備一定的線性代數和概率論基礎。學習不同的演算法最好結合相應的應用場景進行分析,有的場景也需要結合多個演算法進行分析梁嫌。另外,通過場景來學習演算法的使用會盡快建立畫面感。
採用Python進行數據分析還需要掌握一系列庫的使用,包括Numpy(矩陣運算庫)、Scipy(統計運算庫)、Matplotpb(繪圖庫)、pandas(數據集操作)、Sympy(數值運算庫)等庫,這些庫在Python進行數據分析時有廣泛的應用。
相關推薦:《Python教程》以上就是小編分享的關於python怎麼分析數據的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!
C. python數據分析的基本步驟
一、環境搭建
數據分析最常見的環境是Anaconda+Jupyter notebook
二、導入包
2.1數據處理包導入
2.2畫圖包導入
2.3日期處理包導入
2.4jupyter notebook繪圖設置
三、讀取數據
四、數據預覽
1.數據集大小
2.查看隨便幾行或前幾行或後幾行
3.查看數據類型
4.查看數據的數量、無重復值、平均值、最小值、最大值等
5.查看欄位名、類型、空值數為多少
五、數據處理
把需要的欄位挑選出來。
數據類型轉換
日期段數據處理。
D. python如何做數據分析
用Python做數據分析,大致流程如下:
1、數據獲取
可以通過SQL查詢語句來獲取資料庫中想要數據。Python已經具有連接sql server、mysql、orcale等主流資料庫的介麵包,比如pymssql、pymysql、cx_Oracle等。
2、數據存儲
企業當中的數據存儲,通過通過資料庫如Mysql來存儲與管理,對於非結構化數據的存儲可以使用MongoDB等。對於使用Python進行網路抓取的數據,我們也可以使用pymysql包快速地將其存儲到Mysql中去。
3、數據預處理/數據清洗
大多數情況下,原始數據是存在格式不一致,存在異常值、缺失值等問題的,而不同項目數據預處理步驟的方法也不一樣。Python做數據清洗,可以使用Numpy和Pandas這兩個工具庫。
4、數據建模與分析
常見的數據挖掘模型有:分類、聚類、回歸等,這些常見的演算法模型,Python也有Scikit-learn和Tensorflow工具庫來支持。
5、數據可視化分析
在數據可視化方面,Python有Matplotlib、Seaborn、Pyecharts等工具庫可用。
E. 利用Python進行數據分析(11)-高階應用category
本文中介紹的是pandas的高階應用-分類數據category
一個列中經常會包含重復值,這些重復值是一個小型的不同值的集合。
unique() 和 value_counts() 能夠從數組中提取到不同的值並分別計算它們的頻率
維度表包含了不同的值,將主要觀測值存儲為引用維度表的整數鍵
不同值的數組被稱兆胡旅之為數據的類別、字典或者層級族凳
如果不指定順序,分類轉換是無序的。我們可以自己顯做核式地指定
如果在特定的數據集上做了大量的數據分析,將數據轉成分類數據有大大提高性能
特殊屬性cat提供了對分類方法的訪問
在機器學習或統計數據中,通常需要將分類數據轉成虛擬變數,也稱之為one-hot編碼
F. 如何學習python數據分析
第一階段:Python編程語言核心基礎
快速掌握一門數據科學的有力工具。
第二階段:Python數據分析基本工具
通過介基猛或紹NumPy、Pandas、MatPlotLib、Seaborn等工知巧具,快速具備數據分析的專業范兒。
第三階段:Python語言描述的數學基礎
概率統計、線性代數、時間序列分析、隨機過程是構建數據科學的基石,這里獨樹一幟,通過python語言描述這些數學,快速讓數學知識為我所用,融會貫通。
第四階段:機器學習典型演算法專題
這一部分利用前面介紹的基礎知識,對搏伍機器學習的常用核心演算法進行抽絲剝繭、條分縷析、各個擊破。
第五階段:實戰環節深度應用
在這一部分利用已有的知識進行實戰化的數據分析,例如:對基金投資策略、城市房屋租賃等熱門數據展開圍獵。
G. 北大青鳥java培訓:如何利用python語言進行數據分析
隨著互聯網的不斷發展,數據分析已經成為指導我們工作方向的主要依據之一,而今天我們就一起來了解一下,如何利用python編程開發來進行數據分析,下面電腦培訓http://www.kmbdqn.cn/就開始今天的主要內容吧。
為什麼要學習Python進行數據分析?Python作為一種用於數據分析的語言,近引起了廣泛的興趣。
我以前學過Python的基礎知識。
下面是一搭喚些支持學習Python的原因:開源-免費安裝很棒的在線社區簡單易學可以成為數據科學和基於web的分析產品生成的通用語言不用說,它也有一些缺點:它是一種解釋語言而不是編譯語言——因此可能會佔用更多的CPU時間。
但是,考慮到節省了程序員的時間(由於易於學習),它仍然是一個不錯的選擇。
Python2.7和3.4這是Python中受爭議的話題之一。
您一定會遇到它,特別是如果您是初學者的話。
這里沒有正確/錯誤的選擇。
這完全取決於情況和你的需要。
我會試著給你一些建議來幫助你做出明智的選擇。
為什麼Python2.7?很棒的社區支持!這是你早年需要的東西。
Python2於2000年末發布,已經使用了超過15年。
過多的三方庫!雖然許多庫都提供了3.x支持,但仍然有很多模塊只能在2.x版本上工作。
如果您計劃將Python用於孝枝改特定的應用程序,比巧判如高度依賴外部模塊的web開發,那麼使用2.7可能會更好。
H. python如何進行文獻分析
Python可以使用文本分析和統計方法來進行文獻分析。以下是Python進行文獻分析的一些方法差歷旅:
1. 使用Python的自然語言處理(NLP)庫,如NLTK或spaCy,來對文獻進行分詞、命名實體識別、詞性標注等操作,以便對文獻進行語言統計分析。
2. 可以使用Python的Pandas庫來對文獻進行數據處理和分析,將文獻數據導入Pandas DataFrame中,並對其進行數據清洗、統計分析、可視化等操作。
3. 使用Python的網路爬蟲庫,如Requests和BeautifulSoup,來爬取在線文獻資料庫或社交媒體平台上的相關虛凳文章,並通過數據挖掘和機器學習演算法來發現其中的相關性和趨勢。
4. 通過使用Python的數據可視化庫,如Matplotlib和Seaborn,來將分析結果可視化,便於更好地理解大量數據和引領後續工作。
總之,Python提供了靈活和強大的工具集,結合適當的文獻分析領域知識,可以快速、便捷地完成文獻分析任務。
舉例來說,一個研究人員想對某個領域的文爛裂獻進行分析,探究其中的研究重點、熱點和趨勢。首先,研究人員需要獲得相關的文獻數據,可以通過在線文獻資料庫或者社交媒體平台來獲得。
接下來,研究人員可以使用Python的網路爬蟲庫,如Requests和BeautifulSoup,來爬取這些數據,並將其存儲到Pandas DataFrame中進行清洗和分析。例如,可以對文獻進行分詞、命名實體識別等操作,以便發現其中的熱點和重點。
然後,研究人員可以使用Python的數據可視化庫,如Matplotlib和Seaborn,來將分析結果可視化,例如使用詞雲圖、詞頻圖、關聯圖等方式展示文獻中的關鍵詞、主題和相關性,以便更好地理解和表達分析結果。
通過以上的Python工具和方法,研究人員可以對大量文獻數據進行深度挖掘和分析,在較短時間內獲得比較完整和准確的結果,提升研究效率和成果。
I. 利用Python進行數據分析-讀書筆記(3)
pandas專門為處理表格和混雜數據設計
import pandas as pd
from pandas import Series,DataFrame
Series 類似於一維數組+索引
data = pd.Series([1,2,3,4,5]) 生成Series數據
data.values data.index
pd.Series([1,2],index = ['a','b']) 設置索引
data['a'] 通過索引選取Series中單個或一組值
data[data%2==0] 進行類似numpy數組的運算index仍會保留
'a' in data
pd.Series(python字典) 可以通過python字典創建Series
可以通過設置index改變Series元素順序
缺失值用NaN表示
pd.isnull(data) 檢測缺失數據
pd.notnull
data1 + data2 可以根據索引自動對齊數據進行運算,類似join操作
data.name data.index.name 可賦值
index可以通過賦值方式修改
pd.DataFrame(XXX)傳入元素為等長列表或np數組組成的字典可以生成DataFrame數據,字典key值為列名
frame.head() 前五行
pd.DataFrame(XXX, columns = [xxx], index = [xxxxx]) 可能產生NaN
frame['a'] 取列名為a的一列數據 等價於 frame.a(此時a需要是合理的變數名) 可以以列表形式取多列數據 返回的Series序列索引與原DataFrame相同
frame.loc[0] 行選取
可以用一個Series/值對某列賦值,需要長度相等
對不檔伍存在的列賦值可創建新列
del frame[列名] 刪除列
通過索慶蠢碰引方式返回數據視圖,修改此返回數據也會影響源數據,Series.()可以創建副本
嵌套字典傳給DataFrame,外層字典的鍵作為列名,內層鍵作為行索引
frame.T 轉置
frame.reindex(新索引列表) 根據新索引重排,若索引值當前不存在則NaN
列可以用columns關鍵字重新索引
obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
obj3.reindex(range(6), method='ffill') ffill實譽談現前向值填充
reindex可以修改(行)索引和列。只傳遞一個序列時,會重新索引結果的行,列可以用columns關鍵字重新索引
Series索引
series(索引列表/數值范圍切片) 選取對應元素
J. 可以讓你快速用Python進行數據分析的10個小技巧
一些小提示和小技巧可能是非常有用的,特別是在編程領域。有時候使用一點點黑客技術,既可以節省時間,還可能挽救「生命」。
一個小小的快捷方式或附加組件有時真是天賜之物,並且可以成為真正的生產力助推器。所以,這里有一些小提示和小技巧,有些可能是新的,但我相信在下一個數據分析項目中會讓你非常方便。
Pandas中數據框數據的Profiling過程
Profiling(分析器)是一個幫助我們理解數據的過程,而Pandas Profiling是一個Python包,它可以簡單快速地對Pandas 的數據框數據進行 探索 性數據分析。
Pandas中df.describe()和df.info()函數可以實現EDA過程第一步。但是,它們只提供了對數據非常基本的概述,對於大型數據集沒有太大幫助。 而Pandas中的Profiling功能簡單通過一行代碼就能顯示大量信息,且在互動式HTML報告中也是如此。
對於給定的數據集,Pandas中的profiling包計算了以下統計信息:
由Pandas Profiling包計算出的統計信息包括直方圖、眾數、相關系數、分位數、描述統計量、其他信息——類型、單一變數值、缺失值等。
安裝
用pip安裝或者用conda安裝
pip install pandas-profiling
conda install -c anaconda pandas-profiling
用法
下面代碼是用很久以前的泰坦尼克數據集來演示多功能Python分析器的結果。
#importing the necessary packages
import pandas as pd
import pandas_profiling
df = pd.read_csv('titanic/train.csv')
pandas_profiling.ProfileReport(df)
一行代碼就能實現在Jupyter Notebook中顯示完整的數據分析報告,該報告非常詳細,且包含了必要的圖表信息。
還可以使用以下代碼將報告導出到互動式HTML文件中。
profile = pandas_profiling.ProfileReport(df)
profile.to_file(outputfile="Titanic data profiling.html")
Pandas實現互動式作圖
Pandas有一個內置的.plot()函數作為DataFrame類的一部分。但是,使用此功能呈現的可視化不是互動式的,這使得它沒那麼吸引人。同樣,使用pandas.DataFrame.plot()函數繪制圖表也不能實現交互。 如果我們需要在不對代碼進行重大修改的情況下用Pandas繪制互動式圖表怎麼辦呢?這個時候就可以用Cufflinks庫來實現。
Cufflinks庫可以將有強大功能的plotly和擁有靈活性的pandas結合在一起,非常便於繪圖。下面就來看在pandas中如何安裝和使用Cufflinks庫。
安裝
pip install plotly
# Plotly is a pre-requisite before installing cufflinks
pip install cufflinks
用法
#importing Pandas
import pandas as pd
#importing plotly and cufflinks in offline mode
import cufflinks as cf
import plotly.offline
cf.go_offline()
cf.set_config_file(offline=False, world_readable=True)
是時候展示泰坦尼克號數據集的魔力了。
df.iplot()
df.iplot() vs df.plot()
右側的可視化顯示了靜態圖表,而左側圖表是互動式的,更詳細,並且所有這些在語法上都沒有任何重大更改。
Magic命令
Magic命令是Jupyter notebook中的一組便捷功能,旨在解決標准數據分析中的一些常見問題。使用命令%lsmagic可以看到所有的可用命令。
所有可用的Magic命令列表
Magic命令有兩種:行magic命令(line magics),以單個%字元為前綴,在單行輸入操作;單元magic命令(cell magics),以雙%%字元為前綴,可以在多行輸入操作。如果設置為1,則不用鍵入%即可調用Magic函數。
接下來看一些在常見數據分析任務中可能用到的命令:
% pastebin
%pastebin將代碼上傳到Pastebin並返回url。Pastebin是一個在線內容託管服務,可以存儲純文本,如源代碼片段,然後通過url可以與其他人共享。事實上,Github gist也類似於pastebin,只是有版本控制。
在file.py文件中寫一個包含以下內容的python腳本,並試著運行看看結果。
#file.py
def foo(x):
return x
在Jupyter Notebook中使用%pastebin生成一個pastebin url。
%matplotlib notebook
函數用於在Jupyter notebook中呈現靜態matplotlib圖。用notebook替換inline,可以輕松獲得可縮放和可調整大小的繪圖。但記得這個函數要在導入matplotlib庫之前調用。
%run
用%run函數在notebook中運行一個python腳本試試。
%run file.py
%%writefile
%% writefile是將單元格內容寫入文件中。以下代碼將腳本寫入名為foo.py的文件並保存在當前目錄中。
%%latex
%%latex函數將單元格內容以LaTeX形式呈現。此函數對於在單元格中編寫數學公式和方程很有用。
查找並解決錯誤
互動式調試器也是一個神奇的功能,我把它單獨定義了一類。如果在運行代碼單元時出現異常,請在新行中鍵入%debug並運行它。 這將打開一個互動式調試環境,它能直接定位到發生異常的位置。還可以檢查程序中分配的變數值,並在此處執行操作。退出調試器單擊q即可。
Printing也有小技巧
如果您想生成美觀的數據結構,pprint是首選。它在列印字典數據或JSON數據時特別有用。接下來看一個使用print和pprint來顯示輸出的示例。
讓你的筆記脫穎而出
我們可以在您的Jupyter notebook中使用警示框/注釋框來突出顯示重要內容或其他需要突出的內容。注釋的顏色取決於指定的警報類型。只需在需要突出顯示的單元格中添加以下任一代碼或所有代碼即可。
藍色警示框:信息提示
<p class="alert alert-block alert-info">
<b>Tip:</b> Use blue boxes (alert-info) for tips and notes.
If it』s a note, you don』t have to include the word 「Note」.
</p>
黃色警示框:警告
<p class="alert alert-block alert-warning">
<b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical formulas.
</p>
綠色警示框:成功
<p class="alert alert-block alert-success">
Use green box only when necessary like to display links to related content.
</p>
紅色警示框:高危
<p class="alert alert-block alert-danger">
It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.
</p>
列印單元格所有代碼的輸出結果
假如有一個Jupyter Notebook的單元格,其中包含以下代碼行:
In [1]: 10+5
11+6
Out [1]: 17
單元格的正常屬性是只列印最後一個輸出,而對於其他輸出,我們需要添加print()函數。然而通過在notebook頂部添加以下代碼段可以一次列印所有輸出。
添加代碼後所有的輸出結果就會一個接一個地列印出來。
In [1]: 10+5
11+6
12+7
Out [1]: 15
Out [1]: 17
Out [1]: 19
恢復原始設置:
InteractiveShell.ast_node_interactivity = "last_expr"
使用'i'選項運行python腳本
從命令行運行python腳本的典型方法是:python hello.py。但是,如果在運行相同的腳本時添加-i,例如python -i hello.py,就能提供更多優勢。接下來看看結果如何。
首先,即使程序結束,python也不會退出解釋器。因此,我們可以檢查變數的值和程序中定義的函數的正確性。
其次,我們可以輕松地調用python調試器,因為我們仍然在解釋器中:
import pdb
pdb.pm()
這能定位異常發生的位置,然後我們可以處理異常代碼。
自動評論代碼
Ctrl / Cmd + /自動注釋單元格中的選定行,再次命中組合將取消注釋相同的代碼行。
刪除容易恢復難
你有沒有意外刪除過Jupyter notebook中的單元格?如果答案是肯定的,那麼可以掌握這個撤消刪除操作的快捷方式。
如果您刪除了單元格的內容,可以通過按CTRL / CMD + Z輕松恢復它。
如果需要恢復整個已刪除的單元格,請按ESC + Z或EDIT>撤消刪除單元格。
結論
在本文中,我列出了使用Python和Jupyter notebook時收集的一些小提示。我相信它們會對你有用,能讓你有所收獲,從而實現輕松編碼!