❶ 如何用形象的比喻描述大數據的技術生態
大數據本身是個很寬泛的概念,Hadoop生態圈(或者泛生態圈)基本上都是為了處理超過單機尺度的數據處理而誕生的。你可以把它比作一個廚房所以需要的各種工具。鍋碗瓢盆,各有各的用處,互相之間又有重合。你可以用湯鍋直接當碗吃飯喝湯,你可以用小刀或者刨子去皮。但是每個工具有自己的特性,雖然奇怪的組合也能工作,但是未必是最佳選擇。
大數據,首先你要能存的下大數據。
傳統的文件系統是單機的,不能橫跨不同的機器。HDFS(Hadoop Distributed FileSystem)的設計本質上是為了大量的數據能橫跨成百上千台機器,但是你看到的是一個文件系統而不是很多文件系統。比如你說我要獲取/hdfs/tmp/file1的數據,你引用的是一個文件路徑,但是實際的數據存放在很多不同的機器上。你作為用戶,不需要知道這些,就好比在單機上你不關心文件分散在什麼磁軌什麼扇區一樣。HDFS為你管理這些數據。
存的下數據之後,你就開始考慮怎麼處理數據。雖然HDFS可以為你整體管理不同機器上的數據,但是這些數據太大了。一台機器讀取成T上P的數據(很大的數據哦,比如整個東京熱有史以來所有高清電影的大小甚至更大),一台機器慢慢跑也許需要好幾天甚至好幾周。對於很多公司來說,單機處理是不可忍受的,比如微博要更新24小時熱博,它必須在24小時之內跑完這些處理。那麼我如果要用很多台機器處理,我就面臨了如何分配工作,如果一台機器掛了如何重新啟動相應的任務,機器之間如何互相通信交換數據以完成復雜的計算等等。這就是MapRece / Tez / Spark的功能。MapRece是第一代計算引擎,Tez和Spark是第二代。MapRece的設計,採用了很簡化的計算模型,只有Map和Rece兩個計算過程(中間用Shuffle串聯),用這個模型,已經可以處理大數據領域很大一部分問題了。
那什麼是Map什麼是Rece看
考慮如果你要統計一個巨大的文本文件存儲在類似HDFS上,你想要知道這個文本里各個詞的出現頻率。你啟動了一個MapRece程序。Map階段,幾百台機器同時讀取這個文件的各個部分,分別把各自讀到的部分分別統計出詞頻,產生類似
(hello, 12100次),(world,15214次)等等這樣的Pair(我這里把Map和Combine放在一起說以便簡化);這幾百台機器各自都產生了如上的集合,然後又有幾百台機器啟動Rece處理。Recer機器A將從Mapper機器收到所有以A開頭的統計結果,機器B將收到B開頭的詞彙統計結果(當然實際上不會真的以字母開頭做依據,而是用函數產生Hash值以避免數據串化。因為類似X開頭的詞肯定比其他要少得多,而你不希望數據處理各個機器的工作量相差懸殊)。然後這些Recer將再次匯總,(hello,12100)+(hello,12311)+(hello,345881)= (hello,370292)。每個Recer都如上處理,你就得到了整個文件的詞頻結果。
這看似是個很簡單的模型,但很多演算法都可以用這個模型描述了。
Map+Rece的簡單模型很黃很暴力,雖然好用,但是很笨重。第二代的Tez和Spark除了內存Cache之類的新feature,本質上來說,是讓Map/Rece模型更通用,讓Map和Rece之間的界限更模糊,數據交換更靈活,更少的磁碟讀寫,以便更方便地描述復雜演算法,取得更高的吞吐量。
有了MapRece,Tez和Spark之後,程序員發現,MapRece的程序寫起來真麻煩。他們希望簡化這個過程。這就好比你有了匯編語言,雖然你幾乎什麼都能幹了,但是你還是覺得繁瑣。你希望有個更高層更抽象的語言層來描述演算法和數據處理流程。於是就有了Pig和Hive。Pig是接近腳本方式去描述MapRece,Hive則用的是SQL。它們把腳本和SQL語言翻譯成MapRece程序,丟給計算引擎去計算,而你就從繁瑣的MapRece程序中解脫出來,用更簡單更直觀的語言去寫程序了。
有了Hive之後,人們發現SQL對比Java有巨大的優勢。一個是它太容易寫了。剛才詞頻的東西,用SQL描述就只有一兩行,MapRece寫起來大約要幾十上百行。而更重要的是,非計算機背景的用戶終於感受到了愛:我也會寫SQL!於是數據分析人員終於從乞求工程師幫忙的窘境解脫出來,工程師也從寫奇怪的一次性的處理程序中解脫出來。大家都開心了。Hive逐漸成長成了大數據倉庫的核心組件。甚至很多公司的流水線作業集完全是用SQL描述,因為易寫易改,一看就懂,容易維護。
自從數據分析人員開始用Hive分析數據之後,它們發現,Hive在MapRece上跑,真雞巴慢!流水線作業集也許沒啥關系,比如24小時更新的推薦,反正24小時內跑完就算了。但是數據分析,人們總是希望能跑更快一些。比如我希望看過去一個小時內多少人在充氣娃娃頁面駐足,分別停留了多久,對於一個巨型網站海量數據下,這個處理過程也許要花幾十分鍾甚至很多小時。而這個分析也許只是你萬里長征的第一步,你還要看多少人瀏覽了跳蛋多少人看了拉赫曼尼諾夫的CD,以便跟老闆匯報,我們的用戶是猥瑣男悶騷女更多還是文藝青年/少女更多。你無法忍受等待的折磨,只能跟帥帥的工程師蟈蟈說,快,快,再快一點!
於是Impala,Presto,Drill誕生了(當然還有無數非著名的交互SQL引擎,就不一一列舉了)。三個系統的核心理念是,MapRece引擎太慢,因為它太通用,太強壯,太保守,我們SQL需要更輕量,更激進地獲取資源,更專門地對SQL做優化,而且不需要那麼多容錯性保證(因為系統出錯了大不了重新啟動任務,如果整個處理時間更短的話,比如幾分鍾之內)。這些系統讓用戶更快速地處理SQL任務,犧牲了通用性穩定性等特性。如果說MapRece是大砍刀,砍啥都不怕,那上面三個就是剔骨刀,靈巧鋒利,但是不能搞太大太硬的東西。
這些系統,說實話,一直沒有達到人們期望的流行度。因為這時候又兩個異類被造出來了。他們是Hive on Tez / Spark和SparkSQL。它們的設計理念是,MapRece慢,但是如果我用新一代通用計算引擎Tez或者Spark來跑SQL,那我就能跑的更快。而且用戶不需要維護兩套系統。這就好比如果你廚房小,人又懶,對吃的精細程度要求有限,那你可以買個電飯煲,能蒸能煲能燒,省了好多廚具。
上面的介紹,基本就是一個數據倉庫的構架了。底層HDFS,上面跑MapRece/Tez/Spark,在上面跑Hive,Pig。或者HDFS上直接跑Impala,Drill,Presto。這解決了中低速數據處理的要求。
那如果我要更高速的處理呢看
如果我是一個類似微博的公司,我希望顯示不是24小時熱博,我想看一個不斷變化的熱播榜,更新延遲在一分鍾之內,上面的手段都將無法勝任。於是又一種計算模型被開發出來,這就是Streaming(流)計算。Storm是最流行的流計算平台。流計算的思路是,如果要達到更實時的更新,我何不在數據流進來的時候就處理了看比如還是詞頻統計的例子,我的數據流是一個一個的詞,我就讓他們一邊流過我就一邊開始統計了。流計算很牛逼,基本無延遲,但是它的短處是,不靈活,你想要統計的東西必須預先知道,畢竟數據流過就沒了,你沒算的東西就無法補算了。因此它是個很好的東西,但是無法替代上面數據倉庫和批處理系統。
還有一個有些獨立的模塊是KV Store,比如Cassandra,Hbase,MongoDB以及很多很多很多很多其他的(多到無法想像)。所以KV Store就是說,我有一堆鍵值,我能很快速滴獲取與這個Key綁定的數據。比如我用身份證號,能取到你的身份數據。這個動作用MapRece也能完成,但是很可能要掃描整個數據集。而KV Store專用來處理這個操作,所有存和取都專門為此優化了。從幾個P的數據中查找一個身份證號,也許只要零點幾秒。這讓大數據公司的一些專門操作被大大優化了。比如我網頁上有個根據訂單號查找訂單內容的頁面,而整個網站的訂單數量無法單機資料庫存儲,我就會考慮用KV Store來存。KV Store的理念是,基本無法處理復雜的計算,大多沒法JOIN,也許沒法聚合,沒有強一致性保證(不同數據分布在不同機器上,你每次讀取也許會讀到不同的結果,也無法處理類似銀行轉賬那樣的強一致性要求的操作)。但是丫就是快。極快。
每個不同的KV Store設計都有不同取捨,有些更快,有些容量更高,有些可以支持更復雜的操作。必有一款適合你。
除此之外,還有一些更特製的系統/組件,比如Mahout是分布式機器學習庫,Protobuf是數據交換的編碼和庫,ZooKeeper是高一致性的分布存取協同系統,等等。
有了這么多亂七八糟的工具,都在同一個集群上運轉,大家需要互相尊重有序工作。所以另外一個重要組件是,調度系統。現在最流行的是Yarn。你可以把他看作中央管理,好比你媽在廚房監工,哎,你妹妹切菜切完了,你可以把刀拿去殺雞了。只要大家都服從你媽分配,那大家都能愉快滴燒菜。
你可以認為,大數據生態圈就是一個廚房工具生態圈。為了做不同的菜,中國菜,日本菜,法國菜,你需要各種不同的工具。而且客人的需求正在復雜化,你的廚具不斷被發明,也沒有一個萬用的廚具可以處理所有情況,因此它會變的越來越復雜。
❷ 重要數據是什麼
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
❸ 什麼叫數據類型
就是對數據的個種形態的描述,如"實型""整型"等,他們的寫法是不同的,實型數有精度,就是後面帶小數,而整型是不帶小數的,
❹ 初期數據是什麼意思呢簡單解釋加比喻謝謝!
原始數據
第一次採集的數據
或第一階段收集整理的數據
❺ 大數據包括什麼
大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
大數據是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
(5)數據比作什麼擴展閱讀:
大數據的應用
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
❻ 大數據是什麼意思
大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。
大數據的結構:
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
以上內容參考:
網路-大數據
❼ 數據的定義是什麼
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,如購物網站的消費記錄,這些數據只有進行處理整合才有意義。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
❽ 什麼是大數據,通俗的講
大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,簡單來說大數據就是海量的數據,就是數據量大、來源廣、種類繁多(日誌、視頻、音頻),大到PB級別,現階段的框架就是為了解決PB級別的數據。
大數據的7大特徵:海量性,多樣性,高速性,可變性,真實性,復雜性,價值性
隨著大數據產業的發展,它逐漸從一個高端的、理論性的概念演變為具體的、實用的理念。
很多情況下大數據來源於生活。
比如你點外賣,准備什麼時候買,你的位置在哪,商家位置在哪,想吃什麼……這都是數據,人一多各種各樣的信息就越多,還不斷增長,把這些信息集中,就是大數據。
大數據的價值並不是在這些數據上,而是在於隱藏在數據背後的——用戶的喜好、習慣還有信息。
❾ 資料庫是什麼能打比喻嗎
資料庫就好象一個電話號碼簿,裡面存著大量美女信息,當你想和那位美女約會了 你就可以掉出相應電話號碼和她聯系,當她換號碼了,你可以對其作出相應修改,以保持及時聯繫上該美女,當你和他發生誤會不想交往了,你可以直接把她號碼刪除,當你新交了一個美女,可以加上他的號碼,還有你可以設計用戶,對號碼進行分類管理等等,啊 都累了.......明白?
❿ (數據表)這三個字是指什麼意思最好是能夠簡單解釋和加比喻謝謝!
先要弄清楚什麼是「數據」。數據是進行各種統計、計算、科學研究或技術設計所依據的數值。如:期中考試,我們班數學最高分98分,最低分67分,平均80.5分。「最高分98分,最低分67分,平均80.5分」,就是與這次我們班數學考試的相關數據。又如:我校高三(1)班60人,(2)班57人,(3)班59人,(4)班55人,共計231人。這就是有關我校高三年級人數的數據。
有了數據,要對數據進行處理。數據處理,指對於科學研究、生產實踐、經濟活動等領域中所獲得的大量有關數據(可以是數字、圖表、符號、文字和曲線等形式),如實驗數據、觀測數據、統計數據、原始數據等,按不同使用要求進行歸納、整理、組織、分類、統計以及繪制圖表等的工作。數據表就是處理數據的一種形式,它是依據相關數據和要求繪制的圖表。例如下面的圖表就是一幅簡單的數據表(反映的是1012年倫敦奧運會前8名國家的獲獎情況):