A. 提高數據分析能力必讀書籍推薦
【導讀】隨著互聯網的發展,數據分析已經成了非常熱門的職業,大數據分析師也成了社會打工人趨之若鶩的職業,不僅高薪還沒有很多職場微世界的繁瑣事情,不過要想做好數據分析工作也並不簡單,參看一些好書,對行進數據分析會更有幫助!今天小編就給大家帶來了提高數據分析能力必讀書籍推薦,希望對各位小夥伴有所幫助。
數據分析進階
1.《精益數據分析》
本書展示了怎樣驗證自己的設想、找到實在的客戶、打造能掙錢的產品,以及行進企業知名度。並經過30多個事例剖析,深化展示了怎樣將六個典型的商業辦法運用到各種規劃的精益創業、數據分析根底,和數據驅動的思維辦法中,找到企業添加的首先要害方針。
2.《數學之美》
本書把深邃的數學原理講得愈加通俗易懂,讓非專業讀者也能領會數學的魅力。讀者經過具體的比方學到的是考慮問題的辦法 ——
怎樣化繁為簡,怎樣用數學去向理工程問題,怎樣跳出固有思維不斷去考慮立異。
數據挖掘
1.《數據挖掘導論(無缺版)》
本書全面介紹了數據挖掘,包括了五個主題:數據、分類、相關剖析、聚類和異常檢測。除異常檢測外,每個主題都有兩章。前一章包括根柢概念、代表性演算法和點評技術,然後一章談論高檔概念和演算法。這樣讀者在透徹地了解數據挖掘的根底的一同,還可以了解更多重要的高檔主題。
2.《數據挖掘概念與技術》
本書無缺全面地敘說數據挖掘的概念、辦法、技術和最新研討翻開。本書對前兩版做了全面修訂,加強和從頭組織了全書的技術內容,要害論說了數據預處理、再三辦法挖掘、分類和聚類等的內容,還全面敘說了OLAP和離群點檢測,並研討了挖掘網路、凌亂數據類型以及重要運用范疇。
3.《數據挖掘與數據化運營實戰:思維、辦法、技巧與運用》
現在有關數據挖掘在數據化運營實踐范疇比較全面和系統的作品,也是諸大都據挖掘書本中為數不多的交叉許多實在的實踐運用事例和場景的作品,更是發明性地針對數據化運營中不同剖析挖掘課題類型,推出逐一對應的剖析思路集錦和相應的剖析技巧集成,為讀者供給「菜單化」實戰錦囊的作品
作為數據分析師,如果僅僅安於現狀,不注重自我行進,那麼,不久的將來,你很或許成為公司的「人肉」取數機,影響往後的工作生計。
以上就是小編今天給大家整理分享關於「提高數據分析能力必讀書籍推薦」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,一直學習,這樣更有核心競爭力與競爭資本。
B. 有哪些數據分析、數據挖掘的書推薦下
1. 深入淺出數據分析 (豆瓣) 這書挺簡單的,基本的內容都涉及了,說得也比較清楚,最後談到了R是大加分。
難易程度:非常易。
2. 啤酒與尿布 (豆瓣) 通過案例來說事情,而且是最經典的例子。
難易程度:非常易。
3. 數據之美 (豆瓣) 一本介紹性的書籍,每章都解決一個具體的問題,甚至還有代碼,對理解數據分析的應用領域和做法非常有幫助。
難易程度:易。
4. 集體智慧編程 (豆瓣) 學習數據分析、數據挖掘、機器學習人員應該仔細閱讀的第一本書。作者通過實際例子介紹了機器學習和數據挖掘中的演算法,淺顯易懂,還有可執行的Python代碼。
難易程度:中。
5. Machine Learning in Action (豆瓣) 用人話把復雜難懂的機器學習演算法解釋清楚了,其中有零星的數學公式,但是是以解釋清楚為目的的。而且有Python代碼,大贊!目前中科院的王斌老師(微博: @王斌_ICTIR)已經翻譯這本書了 機器學習實戰 (豆瓣)。這本書本身質量就很高,王老師的翻譯質量也很高。
難易程度:中。
6. 推薦系統實踐 (豆瓣) 這本書不用說了,研究推薦系統必須要讀的書,而且是第一本要讀的書。
難易程度:中上。
7. 數據挖掘導論 (豆瓣) 最近幾年數據挖掘教材中比較好的一本書,被美國諸多大學的數據挖掘課作為教材,沒有推薦Jiawei Han老師的那本書,因為個人覺得那本書對於初學者來說不太容易讀懂。
難易程度:中上。
8. The Elements of Statistical Learning (豆瓣) 這本書有對應的中文版:統計學習基礎 (豆瓣)。書中配有R包,非常贊!可以參照著代碼學習演算法。
難易程度:難。
9. 統計學習方法 (豆瓣) 李航老師的扛鼎之作,強烈推薦。
難易程度:難。
10. Pattern Recognition And Machine Learning (豆瓣) 經典中的經典。
這些都是在「綠色BI論壇」http://www.powerbibbs.com 找到的,這個論壇經常有數據分析的干貨分享,你可以看一下。
C. 自學數據分析需要看哪些書的
第1本《誰說菜鳥不會數據分析入門篇》
很有趣的數據分析書!基本看過就能明白,以小說的形式講解,很有代入感。包含了數據分析的結構化思維、數據處理技巧、數據展現的技術,很能幫我們提升職場競爭能力。找不到工作的,學好了它,自然沒問題。
第2本《拯救你的Excel數據的分析、處理、展示(動畫版)》
一本用手機看的Excel操作書,大部分例子都配置了二維碼,手機掃掃就能看,基本上可以躺著把書學了。所有數據的分析、處理也都帶了職場範例(有會計、HR、銷售場景),很貼合實際。拯救我們小白的Excel,職場加薪不是夢想!
第3本《Excel圖表之道:如何製作專業有效的商務圖表》
職場大牛的書,教我們做圖表的,好看到不能再好看。可以設計和製作達到雜志級質量的、專業有效的商務圖表。相信平時我們很難做到吧,看了你就知道,也許一切沒那麼難。
第4本《絕了!Excel可以這樣用:數據分析經典案例實戰圖表書》
挺好的一個系列,都是Excle常用的技巧,適合銷售和HR。也是職場故事,很接地氣,帶視頻的,全都是Excel數據分析的常用理念和方法。
第5本《深入淺出數據分析》
深入淺出系列是對新手非常友好的叢書,用生動但啰嗦的語言講解案例。厚厚的一本書翻起來很快。本書涉及的基礎概念比較廣,包含一點統計學知識,學下來對數據分析思維會有一個大概了解。
第6本《MySQL必知必會》
如果真想買書看,可以看這本,適合新手向的學習,看基礎概念和查詢相關的章節即可。網路上大部分MySQL都是偏DBA的。
第7本《深入淺出統計學》
大概是最啰嗦的深入淺出系列,從賣橡皮鴨到賭博機的案例,囊括了常用的統計分析如假設檢驗、概率分布、描述統計、貝葉斯等。
第8本《網站分析實戰》
互聯網不再是網站的天下,但是移動端依舊有Web,我們在朋友圈看到的所有H5活動、第三方內容等,都是依託網頁實現。網站的數據分析依舊有存在空間,網站的數據指標還是能夠指導我們運營!
第9本《深入淺出Python》
還是深入淺出系列,完全適合零基礎的新人。需要注意的是,編程學習不同於其他知識,如果計算機基礎不穩固,在使用中會遇到各類問題。知其然不知其所以然!
第10本《Python學習手冊》
對於擁有編程基礎的人,這本書系無巨細的有些啰嗦,不過對新人,可以避免不必要的坑。把它當作一本工具文檔吧,當遇到不理解的內容隨時翻閱。
第11本《利用Python進行數據分析》
這本書是你學習python不二之選,對著書,著重學習numpy,pandas兩個包!每段代碼都敲打一遍,千萬行的數據清洗基本不會有大問題了。
第12本《R語言實戰》
R語言的入門書籍,從數據讀取到各類統計函數的使用。雖然沒有涉及機器學習,依靠這本書入門R是綽綽有餘了。
第13本《統計學:從數據到結論》
這本書是將R語言和統計學結合的教材,可以利用這本書再復習一遍統計知識。
第14本《深入淺出SQL》
帶你進入SQL語言的心臟地帶,從使用INSERT和SELECT這些基本的查詢語法到使用子查詢(subquery)、連接(join)和事務(transaction)這樣的核心技術來操作資料庫。到讀完《深入淺出SQL》之時,你將不僅能夠理解高效資料庫設計和創建,還能像一個專家那樣查詢、歸一(normalizing)和聯接數據。你將成為數據的真正主人。
第15本《數據挖掘導論》
這本書絕對是一本良心教材,拿到手從第一章開始閱讀,能看多少就看多少。但是要盡量多看點,因為此書你可能要看一輩子的~~
第16本《演算法導論中文版》
本書將嚴謹性和全面性融為一體,深入討論各類演算法,並著力使這些演算法的設計和分析能為各個層次的讀者接受。演算法以英語和偽代碼的形式描述,具備初步程序設計經驗的人就能看懂;說明和解釋力求淺顯易懂,不失深度和數學嚴謹性。
上面的書籍都是PDF版
視頻教材的有:
Python入門教程完整版(懂中文就能學會)資料
Python入門教程完整版(懂中文就能學會)視頻
Mysql從入門到精通全套視頻教程
8天深入理解python教程
大數據Hadoop視頻教程,從入門到精通
Python就業班
Python標准庫(中文版)
數學建模0基礎從入門到精通,全套資源
0基礎Python實戰-四周實現爬蟲系統
麥子學院招牌課程[明星python編程視頻VIP教程][200G](價值9000元)
從零基礎到數據分析師,幫你拿到年薪50萬!
瑋心:xccx158
D. 考數據分析師需要什麼書
【項目數據分析師考試必看的書籍】
一、《CPDA注冊項目數據分析師培訓教程》
《誰說菜鳥不會數據分析(入門篇)(全彩)》能有效幫助職場新人提升職場競爭力,也能幫助市場營銷、金融、財務、人力資源管理人員及產品經理解決實際問題,還能幫助從事咨詢、研究、分析行業的人上,各級管理人士提高專業水平。
E. 數據分析師考試教材有哪些
數據分析師考試教材一共有三本,分別是《供應鏈優化與投資分析》、《數據分析基礎》、《營銷數據分析》。
這三本考試教材以數據分析方法和模型為主要內容,以產品、客戶、營銷、供應鏈和投資為主要應用場景,既有完整場景數據分析的全流程,又有各個模塊的分析演算法和實例,理論結合實際,突出方法和實際操作,是專門從事數據分析事務和企業數據分析不可多得的專業系列參考書,也是各行業涉及數據分析教學、業務提升及數據化轉型人員的參考圖書。
F. 自學備考CDA數據分析師,需要准備哪些教材
如果只想單獨考證,根據官網公布考試大綱有針對性復習,復習一段時間了做下模擬試題,自己學習肯定要付出更多精力和時間.
例如2級建模方向,官網推薦幾本書籍,參考如下:
1.《數據挖掘導論》,藍色的中文翻譯版,書很厚,但是裡面的內容挺有用的,大綱解析里沒講明白的地方大多都能在裡面找到答案;
2.《機器學習》(西瓜書),閱讀難度比《數據挖掘導論》高了一個等級,我是挑著看的;
3.《利用Python進行數據分析》,裡面主要教你pandas、numpy等一些基礎操作,如果已經會用的則可以略過;
4.《Python機器學習基礎教程》,教你怎麼用sklearn,你也可以看《機器學習實戰》,不過後者我沒看過,聽說是用python2.7寫的;
G. 數據分析入門經典書籍推薦
【導讀】隨著互聯網的發展,數據分析已經成了非常熱門的職業,大數據分析師也成了社會打工人趨之若鶩的職業,不僅高薪還沒有很多職場微世界的繁瑣事情,不過要想做好數據分析工作也並不簡單,參看一些好書,對行進數據分析會更有幫助!今天小編就給大家帶來了數據分析入門經典書籍推薦,希望對各位小夥伴有所幫助。
數據分析入門
1.《誰說菜鳥不會數據分析》
不只闡明晰一些常見的剖析技巧,並趁便 Excel 的一些常識以及數據分析在公司中所在的方位,輕松把握數據分析的技術,也對職場了解有必定的幫助。
2.《淺顯易懂數據分析》
數據分析入門首先本。類似於小說的生動辦法,淺顯易懂形象生動地詮釋了數據分析的根柢進程,試驗辦法,最優化辦法/假定查驗法/貝葉斯核演算法/等等辦法論,讓讀者可以對剖析概念有個全面的認知。
Excel根底
1.《Excel圖表之道》
奉告讀者怎樣規劃和製作抵達雜志級質量的、專業有用的商務圖表,作者比照方《商業周刊》、《經濟學人》等全球頂尖商業雜志上的精彩圖表事例進行剖析,給出其依據Excel的完畢辦法,包括數據地圖、動態圖表、儀錶板等許多高檔圖表技巧。
2.《Excel這么用就對了》
所觸及的具體內容包括排序、挑選、函數公式、數據透視表、圖表、宏與VBA
等功用運用,並結合許多的企業運用實例,以圖文並茂的辦法將處理思路和操作進程逐一呈現。
作為數據分析師,如果僅僅安於現狀,不注重自我行進,那麼,不久的將來,你很或許成為公司的「人肉」取數機,影響往後的工作生計。
以上就是小編今天給大家整理分享關於「數據分析入門經典書籍推薦」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,一直學習,這樣更有核心競爭力與競爭資本。
H. 數據分析有哪些好書值得推薦
入門數據分析類
師父領進門,修行在個人。下面這兩本書是入門數據分析必看的書籍,也是檢驗自己是否真的喜歡數據分析。
從0到1:《深入淺出數據分析》
為什麼是它?借用一位讀者的評價「我家的貓都喜歡這本書!」
01 內容簡介
以類似「章回小說」的活潑形式,生動地向讀者展現優秀的數據分析人員應知應會的技術;正文以後,意猶未盡地以三篇附錄介紹數據分析十大要務、R工具及ToolPak工具,在充分展現目標知識以外,為讀者搭建了走向深入研究的橋梁。
02 推薦理由
書名已經很好地表現出了這本書的優點——「深入淺出」。忘記煩惱,這本書與現實世界緊密互動,讓你不再只有枯燥的理論,並且將知識圖形化,復雜的概念簡單化。
經典小黃書:《誰說菜鳥不會數據分析》
是本很好的書,但看過之後,這本書就真一文不值了。
01 內容簡介
很多人看到數據分析就望而卻步,擔心門檻高,無法邁入數據分析的門檻。《誰說菜鳥不會數據分析》努力將數據分析寫成像小說一樣通俗易懂,使讀者可以在無形之中學會數據分析,按照數據分析工作的完整流程來講解。
02 推薦理由
數據分析的入門極品,但真的很入門,優缺兼有。對於入門理解來說是絕佳選擇,對之後的修煉還是不夠的。建議之前全都是自己瞎摸瞎撞搞數據分析的同學進行閱讀,頗有醍醐灌頂之感。
分析工具類
與數據分析相關的工具非常之多,我們常用的有Excel、PPT、SQL等。如果您想精通他們,直接在嗶哩嗶哩搜索聚數雲海,即可找到相關優質課程。
1.Excel
大家常說的Excel,但是不要以為你很會Excel!Excel是所有職場人必備的辦公軟體。Excel功能非常強大,在數據量不是很大的情況下,基本上都能用Excel實現數據分析。推薦如下書籍:
《Excel高效辦公數據處理與分析》
01 內容簡介
根據現代企業決策和管理工作的主要特點,從實際應用出發,介紹了Excel強大的數據處理與分析功能在企業決策和管理工作中的具體應用。
02 推薦理由
本書同時提供了大量需要你做的實例,學而不練是不存在的!
《別怕,Excel函數其實很簡單》
01 內容簡介
《別怕,Excel 函數其實很簡單》用淺顯易懂的圖文、生動形象的比喻以及大量實際工作中的經典案例,介紹了Excel最常用的一部分函數的計算原理和應用技巧,還介紹了數據的科學管理方法,以避免從數據源頭就產生問題。
02 推薦理由
適合希望提高辦公效率的職場人士,特別是經常需要處理分析大量數據並製作統計報表的相關人員,以及相關專業的高校師生閱讀,小白需謹慎!
2. SQL
SQL是數據分析的基礎,是想要學會數據分析能力的必備技能。那這里我只給大家介紹三本書,第一本書零基礎入門,第二是進階,第三本是SQL中的字典,話不多說,我們直接上架。
《SQL基礎教程》
01 推薦理由
介紹了關系資料庫以及用來操作關系資料庫的SQL語言的使用方法。書中通過豐富的圖示、大量示常式序和詳實的操作步驟說明,讓讀者循序漸進地掌握SQL的基礎知識和使用技巧,切實提高編程能力。每章結尾設置有練習題,幫助讀者檢驗對各章內容的理解程度。另外,本書還將重要知識點總結為「法則」,方便讀者隨時查閱。
本書107張圖表+209段代碼+88個法則,是零基礎進階人士必備!
SQL進階:《SQL進階教程》
01 推薦理由
本書是為志在向中級進階的資料庫工程師編寫的一本SQL技能提升指南。全書可分為兩部分,第一部分介紹了SQL語言不同尋常的使用技巧,帶領讀者從SQL常見技術,去探索新發現。旨在幫助讀者提升編程水平;第二部分著重介紹關系資料庫的發展史,把實踐與理論結合起來,旨在幫助讀者加深對關系資料庫和SQL語言的理解。
本書不適合小白!適合具有半年以上SQL使用經驗、已掌握SQL基礎知識和技能、希望提升自己編程水平的讀者閱讀。
SQL輔導書籍
01 推薦理由
本書是麻省理工學院、伊利諾伊大學等眾多大學的參考教材,由淺入深地講解了SQL的內容,實例豐富,便於查閱。本書沒有過多闡述資料庫基礎理論,而是專門針對一線軟體開發人員,直接從SQL SELECT開始,講述實際工作環境中最常用和最必需的SQL知識,實用性極強。
有一定SQL基礎的人士可以將它當做一本字典使用,遇到問題可以查找相應內用。
3.Python
「人生苦短,我用Python」。Python編程語言是最容易學習,並且功能強大的語言。但是很多人聲稱自己精通Python,自己卻寫不出Pythonic的代碼,對很多常用的包不是很了解。萬丈高樓平地起,咱們先從Python中最最基礎的開始。
《Python編程,從入門到實踐》
01 推薦理由
本書最大的特點就是零基礎完全不懂編程的小白也能夠學習,新手想學習選它絕對錯不了。知識點由淺入深循循漸進,並配有視頻教程手把手教學,同時所需的軟體也是免費的。本書也配有相關輔導書籍,有興趣的話可以去看看,但是請記住,這本書是最核心的。
《利用Python進行數據分析》
01 推薦理由
不像別的編程書一樣,從盤古開天闢地開始講起。這本書是直接應用到數據分析的,所以很多在數據分析上應用不那麼頻繁的模塊也就沒有講。
本書第二版針對Python 3.6進行了更新,並增加實際案例向你展示如何高效地解決一系列數據分析問題。你將在閱讀過程中學習到新版本的pandas、NumPy、IPython和Jupyter。
4.R語言
R是用於統計分析、繪圖的語言和操作環境。但是R是有一定難度的,沒有基礎的話請謹慎嘗試!推薦書籍:
《R語言入門與實踐》
01 推薦理由
本書通過三個精心挑選的例子,深入淺出地講解如何使用R語言玩轉數據。將數據科學家必需的專業技能融合其中,教會讀者如何將數據存儲到計算機內存中,如何在必要的時候轉換內存中的數據值,如何用R編寫自己的程序並將其用於數據分析和模擬運行。
案例提升類
《活用數據:驅動業務的數據分析實戰》
01 推薦理由
是一本用數據來幫助企業破解業務難題的實操書,有理論、有方法、有實戰案例。具有業務驅動、案例閉環、思維先導、實戰還原4大特色,同時在思路上清晰連貫,在表達上深入淺出,既能幫助數據分析從業者入門和提升,也能輔助企業各業務部門和各級管理人員做量化決策。
《精益數據分析》
01 推薦理由
本書展示了如何驗證自己的設想、找到真正的客戶、打造能賺錢的產品,以及提升企業知名度。30多個案例分析,全球100多位知名企業家的真知灼見,為你呈現來之不易、經過實踐檢驗的創業心得和寶貴經驗,值得每位創業家和企業家一讀。