① 大數據時代,面臨的七個挑戰和八大趨勢
大數據時代,面臨的七個挑戰和八大趨勢
大數據挑戰和機遇並存,大數據在未來幾年的發展將從前幾年的預期膨脹階段、炒作階段轉入理性發展階段、落地應用階段,大數據在未來幾年將逐漸步入理性發展期。未來的大數據發展依然存在諸多挑戰,但前景依然非常樂觀。
大數據發展的挑戰
目前大數據的發展依然存在諸多挑戰,包括七大方面的挑戰:業務部門沒有清晰的大數據需求導致數據資產逐漸流失;企業內部數據孤島嚴重,導致數據價值不能充分挖掘;數據可用性低,數據質量差,導致數據無法利用;數據相關管理技術和架構落後,導致不具備大數據處理能力;數據安全能力和防範意識差,導致數據泄露;大數據人才缺乏導致大數據工作難以開展;大數據越開放越有價值,但缺乏大數據相關的政策法規,導致數據開放和隱私之間難以平衡,也難以更好的開放。
挑戰一:業務部門沒有清晰的大數據需求
很多企業業務部門不了解大數據,也不了解大數據的應用場景和價值,因此難以提出大數據的准確需求。由於業務部門需求不清晰,大數據部門又是非盈利部門,企業決策層擔心投入比較多的成本,導致了很多企業在搭建大數據部門時猶豫不決,或者很多企業都處於觀望嘗試的態度,從根本上影響了企業在大數據方向的發展,也阻礙了企業積累和挖掘自身的數據資產,甚至由於數據沒有應用場景,刪除很多有價值歷史數據,導致企業數據資產流失。因此,這方面需要大數據從業者和專家一起,推動和分享大數據應用場景,讓更多的業務人員了解大數據的價值。
挑戰二:企業內部數據孤島嚴重
企業啟動大數據最重要的挑戰是數據的碎片化。在很多企業中尤其是大型的企業,數據常常散落在不同部門,而且這些數據存在不同的數據倉庫中,不同部門的數據技術也有可能不一樣,這導致企業內部自己的數據都沒法打通。如果不打通這些數據,大數據的價值則非常難挖掘。大數據需要不同數據的關聯和整合才能更好的發揮理解客戶和理解業務的優勢。如何將不同部門的數據打通,並且實現技術和工具共享,才能更好的發揮企業大數據的價值。
挑戰三:數據可用性低,數據質量差
很多中型以及大型企業,每時每刻也都在產生大量的數據,但很多企業在大數據的預處理階段很不重視,導致數據處理很不規范。大數據預處理階段需要抽取數據把數據轉化為方便處理的數據類型,對數據進行清洗和去噪,以提取有效的數據等操作。甚至很多企業在數據的上報就出現很多不規范不合理的情況。以上種種原因,導致企業的數據的可用性差,數據質量差,數據不準確。而大數據的意義不僅僅是要收集規模龐大的數據信息,還有對收集到的數據進行很好的預處理處理,才有可能讓數據分析和數據挖掘人員從可用性高的大數據中提取有價值的信息。Sybase的數據表明,高質量的數據的數據應用可以顯著提升企業的商業表現,數據可用性提高10%,企業的業績至少提升在10%以上。
挑戰四:數據相關管理技術和架構
技術架構的挑戰包含以下幾方面:(1)傳統的資料庫部署不能處理TB級別的數據,快速增長的數據量超越了傳統資料庫的管理能力。如何構建分布式的數據倉庫,並可以方便擴展大量的伺服器成為很多傳統企業的挑戰;(2)很多企業採用傳統的資料庫技術,在設計的開始就沒有考慮數據類別的多樣性,尤其是對結構化數據、半結構化和非結構化數據的兼容;(3)傳統企業的資料庫,對數據處理時間要求不高,這些數據的統計結果往往滯後一天或兩天才能統計出來。但大數據需要實時處理數據,進行分鍾級甚至是秒級計算。傳統的資料庫架構師缺乏實時數據處理的能力;(4)海量的數據需要很好的網路架構,需要強大的數據中心來支撐,數據中心的運維工作也將成為挑戰。如何在保證數據穩定、支持高並發的同時,減少伺服器的低負載情況,成為海量數據中心運維的一個重點工作。
挑戰五:數據安全
網路化生活使得犯罪分子更容易獲得關於人的信息,也有了更多不易被追蹤和防範的犯罪手段,可能會出現更高明的騙局。如何保證用戶的信息安全成為大數據時代非常重要的課題。在線數據越來越多,黑客犯罪的動機比以往都來的強烈,一些知名網站密碼泄露、系統漏洞導致用戶資料被盜等個人敏感信息泄露事件已經警醒我們,要加強大數據網路安全的建設。另外,大數據的不斷增加,對數據存儲的物理安全性要求會越來越高,從而對數據的多副本與容災機制也提出更高的要求。目前很多傳統企業的數據安全令人擔憂。
挑戰六:大數據人才缺乏
大數據建設的每個環節都需要依靠專業人員完成,因此,必須培養和造就一支掌握大數據技術、懂管理、有大數據應用經驗的大數據建設專業隊伍。目前大數據相關人才的欠缺將阻礙大數據市場發展。據Gartner預測,到2015年,全球將新增440萬個與大數據相關的工作崗位,且會有25%的組織設立首席數據官職位。大數據的相關職位需要的是復合型人才,能夠對數學、統計學、數據分析、機器學習和自然語言處理等多方面知識綜合掌控。未來,大數據將會出現約100萬的人才缺口,在各個行業大數據中高端人才都會成為最炙手可熱的人才,涵蓋了大數據的數據開發工程師、大數據分析師、數據架構師、大數據後台開發工程師、演算法工程師等多個方向。因此需要高校和企業共同努力去培養和挖掘。目前最大的問題是很多高校缺乏大數據,所以擁有大數據的企業應該與學校聯合培養人才。
挑戰七:數據開放與隱私的權衡
在大數據應用日益重要的今天,數據資源的開放共享已經成為在數據大戰中保持優勢的關鍵。商業數據和個人數據的共享應用,不僅能促進相關產業的發展,也能給我們的生活帶來巨大的便利。由於政府、企業和行業信息化系統建設往往缺少統一規劃,系統之間缺乏統一的標准,形成了眾多「信息孤島」,而且受行政壟斷和商業利益所限,數據開放程度較低,這給數據利用造成極大障礙。另外一個制約我國數據資源開放和共享的一個重要因素是政策法規不完善,大數據挖掘缺乏相應的立法。無法既保證共享又防止濫用。因此,建立一個良性發展的數據共享生態系統,是我國大數據發展需要邁過去的一道砍。同時,開放與隱私如何平衡,也是大數據開放過程中面臨的最大難題。如何在推動數據全面開放、應用和共享的同時有效地保護公民、企業隱私,逐步加強隱私立法,將是大數據時代的一個重大挑戰。
大數據發展趨勢
雖然大數據仍在起步階段,存在諸多挑戰,但未來的發展依然非常樂觀。大數據的發展呈現八大趨勢:數據資源化,將成為最有價值的資產;大數據在更多的傳統行業的企業管理落地;大數據和傳統商業智能融合,行業定製化解決方案將涌現;數據將越來越開放,數據共享聯盟將出現;大數據安全越來越受重視,大數據安全市場將愈發重要;大數據促進智慧城市發展,為智慧城市的引擎;大數據將催生一批新的工作崗位和相應的專業;大數據在多方位改善我們的生活。
趨勢一:數據資源化,將成為最有價值的資產
隨著大數據應用的發展,大數據價值得以充分的體現,大數據在企業和社會層面成為重要的戰略資源,數據成為新的戰略制高點,是大家搶奪的新焦點。《華爾街日報》在一份題為《大數據,大影響》的報告宣傳,數據已經成為一種新的資產類別,就像貨幣或黃金一樣。Google、Facebook、亞馬遜、騰訊、網路、阿里巴巴和360等企業正在運用大數據力量獲得商業上更大的成功,並且金融和電信企業也在運用大數據來提升自己的競爭力。我們有理由相信大數據將不斷成為機構和企業的資產,成為提升機構和企業競爭力的有力武器。
趨勢二:大數據在更多的傳統行業的企業管理落地
一種新的技術往往在少數行業應用取得了好的效果,對其他行業就有強烈的示範效應。目前大數據在大型互聯網企業已經得到較好的應用,其他行業的大數據尤其是電信和金融也逐漸在多種應用場景取得效果。因此,我們有理由相信,大數據作為一種從數據中創造新價值的工具,將會在許多行業的企業得到應用,帶來廣泛的社會價值。大數據將在幫助企業更好的理解和滿足客戶需求和潛在需求,更好的應用在業務運營智能監控、精細化企業運營、客戶生命周期管理、精細化營銷、經營分析和戰略分析等方面。企業管理既有藝術也有科學,相信大數據在科學管理企業方面有更顯著的促進,讓更多擁抱大數據的企業實現智慧企業管理。
趨勢三:大數據和傳統商業智能融合,行業定製化解決方案將涌現
來自傳統商業智能領域者將大數據當成一個新增的數據源,而大數據從業者則認為傳統商業智能只是其領域中處理少量數據時的一種方法。大數據用戶更希望能獲得一種整體的解決方案,即不僅要能收集、處理和分析企業內部的業務數據,還希望能引入互聯網上的網路瀏覽、微博、微信等非結構化數據。除此之外,還希望能結合移動設備的位置信息,這樣企業就可以形成一個全面、完整的數據價值發展平台。畢竟,無論是大數據還是商業智能,目的都是為分析服務的,數據全面整合起來,更有利於發現新的商業機會,這就是大數據商業智能。同時,由於行業的差異性,很難研發出一套適用於各行業的大數據商業智能分析系統,因此,在一些規模較大的行業市場,大數據服務提供商將會以更加定製化的商業智能解決方案提供大數據服務。我們相信更多的大數據商業智能定製化解決方案將在電信、金融、零售等行業出現。
趨勢四:數據將越來越開放,數據共享聯盟將出現
大數據越關聯越有價值,越開放越有價值。尤其是公共事業和互聯網企業的數據開放數據將越來越多。我們看到,美國、英國、澳大利亞等國家的政府都在政府和公共事業上的數據做出努力。而國內的一些城市和部門也在逐漸開展數據開放的工作。比如北京市在2012年就開始試運行政務數據資源網,在2013年年底正式開放;上海在2012年啟動了政府數據資源開放試點工作,數據涉及地理位置、交通、經濟統計和資格資質等數據;2014年,貴州省也加入數據開放之列,10月份雲上貴州正式上線。對於不同的行業,數據越共享也是越有價值。如果每一個醫院想獲得更多病情特徵庫以及葯效信息,那麼就需要全國,甚至全世界的醫療信息共享,從而可以通過平台進行分析,獲取更大的價值。我們相信數據會呈現一種共享的趨勢,不同領域的數據聯盟將出現。
趨勢五:大數據安全越來越受重視,大數據安全市場將愈發重要
隨著數據的價值的越來越重要,大數據的安全穩定也將會逐漸被重視。網路和數字化生活也使得犯罪的分子更容易獲取關於他人的信息,也有更多的騙術和犯罪手段出現,所以,在大數據時代,無論對於數據本身的保護,還是對於由數據而演變的一些信息的安全,對大數據分析有較高要求的企業將至關重要。大數據安全是跟大數據業務相對應的,與傳統安全相比,大數據安全的最大區別是安全廠商在思考安全問題的時候首先要進行業務分析,並且找出針對大數據的業務的威脅,然後提出有針對性的解決方案。比如,對於數據存儲這個場景,目前很多企業採用開源軟體如Hadoop技術來解決大數據問題,由於其開源性,但是其安全問題也是突出的。因此,市場需要更多專業的安全廠商針對不同的大數據安全問題來提供專業的服務。
趨勢六:大數據促進智慧城市發展,為智慧城市的引擎
隨著大數據的發展,大數據在智慧城市將發揮著越來越重要的作用。由於人口聚集給城市帶來了交通、醫療、建築等各方面的壓力,需要城市能夠更合理地進行資源布局和調配,而智慧城市正是城市治理轉型的最優解決方案。智慧城市是通過物與物、物與人、人與人的互聯互通能力、全面感知能力和信息利用能力,通過物聯網、移動互聯網、雲計算等新一代信息技術,實現城市高效的政府管理、便捷的民生服務、可持續的產業發展。智慧城市相對於之前數字城市概念,最大的區別在於對感知層獲取的信息進行了智慧的處理。由城市數字化到城市智慧化,關鍵是要實現對數字信息的智慧處理,其核心是引入了大數據處理技術。大數據是智慧城市的核心智慧引擎。智慧安防、智慧交通、智慧醫療、智慧城管等,都是以大數據為基礎的的智慧城市應用領域。
趨勢七:大數據將催生一批新的工作崗位和相應的專業
一個新行業的出現,必將在工作職位方面有新的需求,大數據的出現也將推出一批新的就業崗位,例如,大數據分析師、數據管理專家、大數據演算法工程師、數據產品經理等等。具有有豐富經驗的數據分析人才將成為稀缺的資源,數據驅動型工作將呈現爆炸式的增長。而由於有強烈的市場需求,高校也將逐步開設大數據相關的專業,以培養相應的專業人才。企業也將和高校緊密合作,協助高校聯合培養大數據人才。如2014年,IBM 全面推進與高校在大數據領域的合作,引入強大的研發團隊和業務夥伴,推動「大數據平台」和「大數據分析」的面向行業產學研創新合作以及系統化知識體系建設和高價值人才培養,建設符合中國教學特色及人才需求的大數據相關學分課程,為未來建設特色專業方向做准備。
趨勢八:大數據在多方位改善我們的生活
大數據不僅用於企業和政府,也應用於我們的生活。在健康方面:我們可以利用智能手環監測,對我們的睡眠模式來進行追蹤,了解睡眠質量;我們可以利用智能血壓計、智能心率儀遠程的監控身在異地的家裡老人的健康情況,讓遠在他方的外出工作者更加放心;在出行方面:我們可以利用智能導航出行GPS數據了解交通狀況,並根據擁堵情況進行路線實時調優。在居家生活方面:大數據將成為智能家居的核心,智能家電實現了擬人智能,產品通過感測器和控制晶元來捕捉和處理信息,可以根據住宅空間環境和用戶需求自動設置控制,甚至提出優化生活質量的建議,如我們的冰箱可能會在每天一大早建議我們當天的菜譜。
以上是小編為大家分享的關於大數據時代,面臨的七個挑戰和八大趨勢的相關內容,更多信息可以關注環球青藤分享更多干貨
② 盤點2021年大數據分析常見的5大難點!
2021年已經到來,現在是深入研究大數據分析面臨的挑戰的時候了,需要調查其根本原因,本文重點介紹了解決這些問題的潛在解決方案。
1、解決方案無法提供新見解或及時的見解
(1)數據不足
有些組織可能由於分析數據不足,無法生成新的見解。在這種情況下,可以進行數據審核,並確保現有數據集成提供所需的見解。新數據源的集成也可以消除數據的缺乏。還需要檢查原始數據是如何進入系統的,並確保所有可能的維度和指標均已經公開並進行分析。最後,數據存儲的多樣性也可能是一個問題。可以通過引入數據湖來解決這一問題。
(2)數據響應慢
當組織需要實時接收見解時,通常會發生這種情況,但是其系統是為批處理而設計的。因此有些數據現在仍無法使用,因為它們仍在收集或預處理中。
檢查組織的ETL(提取、轉換、載入)是否能夠根據更頻繁的計劃來處理數據。在某些情況下,批處理驅動的解決方案可以將計劃調整提高兩倍。
(3)新系統採用舊方法
雖然組織採用了新系統。但是通過原有的辦法很難獲得更好的答案。這主要是一個業務問題,並且針對這一問題的解決方案因情況而異。最好的方法是咨詢行業專家,行業專家在分析方法方面擁有豐富經驗,並且了解其業務領域。
2、不準確的分析
(1)源數據質量差
如果組織的系統依賴於有缺陷、錯誤或不完整的數據,那麼獲得的結果將會很糟糕。數據質量管理和涵蓋ETL過程每個階段的強制性數據驗證過程,可以幫助確保不同級別(語法、語義、業務等)的傳入數據的質量。它使組織能夠識別並清除錯誤,並確保對某個區域的修改立即顯示出來,從而使數據純凈而准確。
(2)與數據流有關的系統缺陷
過對開發生命周期進行高質量的測試和驗證,可以減少此類問題的發生,從而最大程度地減少數據處理問題。即使使用高質量數據,組織的分析也可能會提供不準確的結果。在這種情況下,有必要對系統進行詳細檢查,並檢查數據處理演算法的實施是否無故障
3、在復雜的環境中使用數據分析
(1)數據可視化顯示凌亂
如果組織的報告復雜程度太高。這很耗時或很難找到必要的信息。可以通過聘請用戶界面(UI)/用戶體驗(UX)專家來解決此問題,這將幫助組織創建引人注目的用戶界面,該界面易於瀏覽和使用。
(2)系統設計過度
數據分析系統處理的場景很多,並且為組織提供了比其需要還要多的功能,從而模糊了重點。這也會消耗更多的硬體資源,並增加成本。因此,用戶只能使用部分功能,其他的一些功能有些浪費,並且其解決方案過於復雜。
確定多餘的功能對於組織很重要。使組織的團隊定義關鍵指標:希望可以准確地測量和分析什麼,經常使用哪些功能以及關注點是什麼。然後摒棄所有不必要的功能。讓業務領域的專家來幫助組織進行數據分析也是一個很好的選擇。
4、系統響應時間長
(1)數據組織效率低下
也許組織的數據組織起來非常困難。最好檢查其數據倉庫是否根據所需的用例和方案進行設計。如果不是這樣,重新設計肯定會有所幫助。
(2)大數據分析基礎設施和資源利用問題
問題可能出在系統本身,這意味著它已達到其可擴展性極限,也可能是組織的硬體基礎設施不再足夠。
這里最簡單的解決方案是升級,即為系統添加更多計算資源。只要它能在可承受的預算范圍內幫助改善系統響應,並且只要資源得到合理利用就很好。從戰略角度來看,更明智的方法是將系統拆分為單獨的組件,並對其進行獨立擴展。但是需要記住的是,這可能需要對系統重新設計並進行額外的投資。
5、維護成本昂貴
(1)過時的技術
組織最好的解決辦法是採用新技術。從長遠來看,它們不僅可以降低系統的維護成本,還可以提高可靠性、可用性和可擴展性。逐步進行系統重新設計,並逐步採用新元素替換舊元素也很重要。
(2)並非最佳的基礎設施
基礎設施總有一些優化成本的空間。如果組織仍然採用的是內部部署設施,將業務遷移到雲平台可能是一個不錯的選擇。使用雲計算解決方案,組織可以按需付費,從而顯著降低成本。
(3)選擇了設計過度的系統
如果組織沒有使用大多數系統功能,則需要繼續為其使用的基礎設施支付費用。組織根據自己的需求修改業務指標並優化系統。可以採用更加符合業務需求的簡單版本替換某些組件。
③ 在當前大數據的新環境下it企業面臨哪些機會與挑戰
挑戰一:數據來源錯綜復雜,豐富的數據源是大數據產業發展的前提。而我國數字化的數據資源總量遠遠低於美歐。
挑戰二:數據挖掘分析模型建立,關於大數據分析,人們鼓吹其神奇價值的喧囂聲浪很高,卻鮮見其實際運用得法的模式和方法。
挑戰三:數據開放與隱私的權衡,目前我國一些部門和機構擁有大量數據但寧願自己不用也不願提供給有關部門共享,導致信息不完整或重復投資。
挑戰四:大數據管理與決策,在今時今日的商業世界中,高管的決策仍然更多地依賴個人經驗和直覺,而不是基於數據。
挑戰五:大數據人才缺口,精通大數據技術的相關人才也成為一個大缺口。
④ 大數據時代所面臨的挑戰
大數據時代所面臨的挑戰
大數據時代臨近,企業數據呈現爆炸式增長,如何為了更大的發掘企業數據價值將是很多公司必須要面對的挑戰。首當其沖的是大數據的快速發展對我們原有的IT基礎設施提供了更高的挑戰,原有的IT基礎設施以及很難滿足大數據時代的需求。發現價值的過程離不開基礎平台技術的創新與發展。
基礎平台的改變
首先大數據挑戰的就是企業的存儲系統,大數據爆炸式的增長使得存儲系統的容量、擴展能力、傳輸瓶頸等方面都面臨著挑戰。與之相連的還有伺服器的計算能力,內存的存儲能力等等都面臨著新的技術攻關。目前快閃記憶體技術的發展以及英特爾、IBM等公司在大數據方面都已經投入相當大的資金進行研發,主要也是為了解決大數據對基礎平台所帶來的挑戰。
同樣,大數據分析同樣面臨著軟體方面的挑戰,同時也引發資料庫、數據倉庫、數據挖掘、商業智能、人工智慧、內容/知識管理等領域的技術變革。Hadoop是近年大家經常提到了一個能夠對大量數據進行分布式處理的軟體框架,用戶可以輕松地在Hadoop上開發和運行處理海量數據的應用程序。
商業模式的挑戰
大數據具有強大的數據價值,當我們可以利用大數據挖掘到需要信息的時候,則需要我們根據得到的信息對企業的商業模型、產品和服務等方面進行創新,這樣才能夠真正的讓大數據的價值得到體現。
如何利用大數據信息來改變商業模式最終實現價值呢,這里我們引用Tesco為案例。Tesco收集了海量的顧客數據,並且通過對每位顧客海量數據的分析,Tesco對每位顧客的信用程度和相關風險都會有一個極為准確的評估。在這個基礎上,Tesco推出了自己的信用卡,未來Tesco還有野心推出自己的存款服務。
以上是小編為大家分享的關於大數據時代所面臨的挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨
⑤ 大數據工程面臨挑戰有哪些
基礎平台的改變
首先大數據挑戰的就是企業的存儲系統,大數據爆炸式的增長使得存儲系統的容量、擴展能力、傳輸瓶頸等方面都面臨著挑戰。與之相連的還有伺服器的計算能力,內存的存儲能力等等都面臨著新的技術攻關。目前快閃記憶體技術的發展以及英特爾、IBM等公司在大數據方面都已經投入相當大的資金進行研發,主要也是為了解決大數據對基礎平台所帶來的挑戰。
商業模式的挑戰
大數據具有強大的數據價值,當我們可以利用大數據挖掘到需要信息的時候,則需要我們根據得到的信息對企業的商業模型、產品和服務等方面進行創新,這樣才能夠真正的讓大數據的價值得到體現。