導航:首頁 > 數據處理 > 數據分析應該學什麼

數據分析應該學什麼

發布時間:2023-03-11 13:53:54

數據分析需要掌握些什麼知識

1)具有業務敏感度,反應迅速,能夠良好溝通;

2)具有數據分析和數據倉庫建模的項目實踐經驗;

3)3年及以上數據分析經驗,有互聯網產品、運營分析經驗;

4)熟悉R、SAS、SPSS等統計分析軟體,熟練運用Python,熟練使用 SQL、Hive等;

5)本科或以上學歷,數學、統計、計算機、運籌學等相關專業;

那麼對於正在入門階段的同學們應該如何正確把握自己的學習方向呢?

從學科知識來看,數據分析涉及到一下的知識要點:

(1)統計學:參數檢驗、非參檢驗、回歸分析等

(2)數學:線性代數、微積分等

(3)社會學:主要是一些社會學量化統計的知識,如問卷調查與統計分析;還有就是一些社會學的知識,這些對於從事營銷類的數據分析人員比較有幫助

(4)經濟金融:如果是從事這個行業的數據分析人員,經濟金融知識是必須的,這里就不多說了

1)數據分析報告類:Microsoft Office軟體等,如果連excel表格基本的處理操作都不會,連PPT報告都不會做,那我只好說離數據分析的崗位還差的很遠。現在的數據呈現不再單單只是表格的形式,而是更多需要以可視化圖表去展示你的數據結果,因為數據可視化軟體就不能少,BDP個人版、TABLUEA、Echart等這些必備的

(2)專業數據分析軟體:常見的有諸如SPSS、SAS、Matlab等等,這些軟體可以很好地幫助我們完成專業性的演算法或模型分析,還有高級的Python、R等。

(3)資料庫:hive、hadoop、impala等資料庫相關的知識可以學習;

(3)輔助工具:比如思維導圖軟體(如MindManager、MindNode Pro等)也可以很好地幫助我們整理分析思路。

❷ 數據分析需要學習哪些

1、數學知識



數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。



對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。



而對於數據挖掘工程師,除了統計學以外,各類演算法也需要熟練使用,對數學的要求是最高的。



所以數據分析並非一定要數學能力非常好才能學習,只要看你想往哪個方向發展,數據分析也有偏“文”的一面,特別是女孩子,可以往文檔寫作這一方向發展。



2、分析工具



對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。



對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。



對於數據挖掘工程師……嗯,會用用Excel就行了,主要工作要靠寫代碼來解決呢。



3、編程語言



對於初級數據分析師,會寫SQL查詢,有需要的話寫寫Hadoop和Hive查詢,基本就OK了。



對於高級數據分析師,除了SQL以外,學習Python是很有必要的,用來獲取和處理數據都是事半功倍。當然其他編程語言也是可以的。



對於數據挖掘工程師,Hadoop得熟悉,Python/Java/C++至少得熟悉一門,Shell得會用……總之編程語言絕對是數據挖掘工程師的最核心能力了。



4、業務理解



業務理解說是數據分析師所有工作的基礎也不為過,數據的獲取方案、指標的選取、乃至最終結論的洞察,都依賴於數據分析師對業務本身的理解。



對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。



對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。



對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。



業務能力是優秀數據分析師必備的,如果你之前對某一行業已經非常熟悉,再學習數據分析,是非常正確的做法。剛畢業沒有行業經驗也可以慢慢培養,無需擔心。



5、邏輯思維



這項能力在我之前的文章中提的比較少,這次單獨拿出來說一下。



對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。



對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。



對於數據挖掘工程師,邏輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。



6、數據可視化



數據可視化說起來很高大上,其實包括的范圍很廣,做個PPT里邊放上數據圖表也可以算是數據可視化,所以我認為這是一項普遍需要的能力。



對於初級數據分析師,能用Excel和PPT做出基本的圖表和報告,能清楚的展示數據,就達到目標了。



對於高級數據分析師,需要探尋更好的數據可視化方法,使用更有效的數據可視化工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。



對於數據挖掘工程師,了解一些數據可視化工具是有必要的,也要根據需求做一些復雜的可視化圖表,但通常不需要考慮太多美化的問題。



7、協調溝通



對於初級數據分析師,了解業務、尋找數據、講解報告,都需要和不同部門的人打交道,因此溝通能力很重要。



對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。



對於數據挖掘工程師,和人溝通技術方面內容偏多,業務方面相對少一些,對溝通協調的要求也相對低一些。

❸ 數據分析師需要學什麼

數據分析師要學習以下幾點:

一、統計學

對於互聯網的數據分析來說,並不需要掌握太復雜的統計理論。所以只要按照本科教材,學一下統計學就夠了。

二、編程能力

學會一門編程語言,會讓處理數據的效率大大提升。如果只會在 Excel 上復制粘貼,動手能力是不可能快的。

三、資料庫

數據分析師經常和資料庫打交道,不掌握資料庫的使用可不行。學會如何建表和使用 SQL 語言進行數據處理,可以說是必不可少的技能。

四、數據倉庫

許多人分不清楚資料庫和數據倉庫的差異,簡單來說,數據倉庫記錄了所有歷史數據,專門設計為方便數據分析人員高效使用的。

五、數據分析方法

對於互聯網數據分析人員來說,可以看一下《精益創業》和《精益數據分析》,掌握常用的數據分析方法,然後再根據自己公司的產品調整,靈活組合。

六、數據分析工具

SAS、Matlab、SPSS 這些工具經常有人推薦。

關於數據分析師的學習可以到CDA認證機構咨詢一下,CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。

❹ 數據分析需要掌握哪些知識

數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。

而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。

當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。

對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。數據可視化數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。

對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。

❺ 數據分析需要掌握些什麼知識

數據分析需要掌握的知識:
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、分析思維
比如結構化思維、思維導圖、或網路腦圖、麥肯錫式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、資料庫知識
大數據大數據,就是數據量很多,Excel就解決不了這么大數據量的時候,就得使用資料庫。如果是關系型資料庫,比如Oracle、mysql、sqlserver等等,你還得要學習使用SQL語句,篩選排序,匯總等等。非關系型資料庫也得要學習,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起碼常用的了解一兩個,比如Hbase,Mongodb,redis等。
5、開發工具及環境
比如:Linux OS、Hadoop(存儲HDFS,計算Yarn)、Spark、或另外一些中間件。目前用得多的開發工具Java、python等等語言工具。

❻ 數據分析要學習哪些

學什麼?

數據分析要學的內容大致分為6個板塊,分別是:

Excel

精通Excel分析工具,掌握Excel經典函數,准確快速地完成數據清洗,利用Excel數據透視及可視化,可以透過現象看本質。

MySQL

理解MySQL資料庫相關概念及存儲原理,掌握SQL基本的增、刪、改、查等語法掌握資料庫性能調優策略,熟練使用SQL進行數據清洗與數據規范化。

BI商業智能工具

了解商業智能的核心價值,精通FineReport、FineBI,快速挖掘數據價值,掌握行業場景應用。

Python

學習Python基本編程語言知識,了解Python程序的計算機運行原理,能夠使用Python編程處理工作中的重復性工作。 掌握網路數據抓取技術,Python資料庫應用開發,實現Python數據可視化操作,提高數據收集和數據分析能力。 掌握Python數據分析處理基礎庫,具有應用Python語言解決數據分析中實際問題能力。

數據分析思維與理論

掌握微積分、線性代數、概率論、參數估計、假設檢驗、方差分析等數理統計基礎 掌握基本的數學、統計學知識,學習數據運營方法論、機器學習夯實基礎,提升數據敏感性,建立數據思維和數據素養。

掌握如何撰寫行業分析報告和數據分析項目流程,能夠獨立完成數據分析項目。 掌握常見的數據運營方法如AARRR、漏斗、ABTset、描述性統計分析、相關分析、指數系統搭建等,培養利用多種數據分析方法解決實際工作問題能力。

機器學習

掌握機器學習常用經典演算法原理及sklearn代碼的實現、機器學習演算法的選取、調優及模型訓練、神經網路的特點及原理,增加個人核心競爭力,擁有能夠用相關數據挖掘演算法為解決實際問題能力;奠定人工智慧演算法入門基礎。

如何學?

至少花三個月掌握技術

「磨刀不誤砍柴工」,要想從為「工人」,甚至熟悉工,也需要很多技能,因為怎麼說數據分析師也是技術工種。我覺得至少你要花3個月時間來學習一些最基礎的知識。

閱讀全文

與數據分析應該學什麼相關的資料

熱點內容
微信怎麼關注招商基金代理 瀏覽:19
tep是什麼產品的催化劑 瀏覽:672
南京從彩批發市場豬肉價格怎麼樣 瀏覽:194
天蠍座隔多久才回我信息 瀏覽:887
國產手環哪個數據准 瀏覽:809
怎麼添加轉轉app小程序 瀏覽:537
為什麼沒有債券交易所 瀏覽:777
尖端信息技術有哪些 瀏覽:268
投籃數據是什麼意思 瀏覽:247
蘋果數據修改怎麼復原 瀏覽:160
技術學校報名要帶什麼 瀏覽:354
VAR代理商是什麼意思 瀏覽:968
幾百塊產品怎麼買 瀏覽:271
尋找湯鍋市場在哪裡 瀏覽:541
天津錦堂市場離哪個車站近 瀏覽:106
索尼相機版權信息有什麼用 瀏覽:914
培訓機構出租信息去哪裡找 瀏覽:461
技術交流會議紀要如何寫 瀏覽:94
信用卡交易額度不足為什麼 瀏覽:647
安慕希代理怎麼拿 瀏覽:971