『壹』 數據分析是什麼
數據分析是對收集來的大量數據進行分析,提取有用信息,對數據加以詳細研究和概括總結的過程。
1、數據分析是指用適當的統計方法對收集來的大量第一手資料和第二手資料進行分析,以求最大化地開發數據資料的功能,發揮其數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。數據分析可幫助人們作出判斷,以便採取適當行動。
2、數據分析有目的的進行收集、整理、加工和分析數據,提煉有價信息的一個過程。其過程概括起來包括明確分析目的與框架,數據收集,數據處理,數據分析,數據展現和撰寫報告,也包括對比分析法,分組分析,交叉分析,平均分析法等。
3、數據分析能進行較高級的數據統計分析,錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對。而數據分析員是具有數理統計,經濟學以及相關知識;能熟練使用EXCLE、SPSS、QUANVERT、SAS等統計軟體。工作能力嚴謹的邏輯思維能力、學習能力、言語表達能力、管理能力,工作態度積極主動、工作認真、工作嚴謹。
『貳』 什麼是數據分析
數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。
01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。
02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。
03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。
04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。
05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。
06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。
07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。
『叄』 什麼是數據分析帶你了解數據分析的日常工作
【導讀】隨著互聯網事業的發展,以及不斷更新的人工智慧、物聯網等技術,都離不開數據分析,那麼什麼是數據分析?為什麼時下數據分析師是比較熱門的高薪職業呢?很多小夥伴認為數據分析師就是簡單的將數據收集,然後統計最後給出結論這樣的工作,其實不然,下面小編帶你了解數據分析的日常工作,讓你對數據分析師有個更加全面的了解。
數據分析師的日常
日常一:不固定的工作時間
很多上班族的工作時間都是固定的,做五休二,朝九晚五,不免讓人感到乏味。數據分析師卻不然,他們沒有固定的工作時間。因為數據分析師需要根據實時數據給出最新結論。換而言之,數據分析師就是要時刻准備著。
日常二:和數據打交道
數據分析師的日常就是與各種各樣的數據打交道。他們需要花費大量的時間來收集、整理數據。這兩個步驟看似簡單,但是如果將步驟細分,就有些復雜了。這些步驟主要包括:
1.提取數據。2.合並資料。3.分析數據。4.尋找模式或趨勢。5.使用各種工具,包括R,Tableau,Python,Matlab,Hive,Impala,PySpark,Excel,Hadoop,SQL和SAS。6.開發和測試新演算法。7.試圖簡化數據問題。8.開發預測模型。9.建立數據可視化。10.寫出結果並與他人分享。11.匯集概念證明……
但是這些任務都是數據分析師的次要任務,數據分析師的主要任務還是先確定問題,然後再通過嘗試不同的辦法來解決問題。
日常三:讓數據變得通俗易懂
有人認為,數據分析師是可有可無的。這樣的人往往不具備前瞻性。事實恰恰相反,數據分析師不僅僅需要建立模型,還需要解決問題。他們需要對數據進行處理,需要從小的角度看到全局,整理出簡潔明了的報告,從而讓外行人明白數據的含義。
日常四:不斷汲取新的知識
數據分析師盯著電腦只會是在分析數據嗎?
NO!他們可能是在:
1.瀏覽與行業相關的博客、新聞、通訊以及討論區。
2.參加會議或者和其他數據分析師在線交流。
3.探索出新方法時,和同行共享新信息。......
除了在數據中挖掘寶藏信息,數據分析師還需要在數據分析領域不停地鑽研。一個優秀的數據分析師,只有通過不斷地學習新的知識,才能與時俱進,不被社會淘汰。
以上就是小編今天給大家整理分享關於「什麼是數據分析?帶你了解數據分析的日常工作」的相關內容,希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
『肆』 問卷調查,「數據分析」具體指什麼
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。
數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。
(4)上周工作總結數據分析是什麼意思擴展閱讀
數據分析有極廣泛的應用范圍。典型的數據分析可能包含以下三個步:
1、探索性數據分析:當數據剛取得時,可能雜亂無章,看不出規律,通過作圖、造表、用各種形式的方程擬合,計算某些特徵量等手段探索規律性的可能形式,即往什麼方向和用何種方式去尋找和揭示隱含在數據中的規律性。
2、模型選定分析,在探索性分析的基礎上提出一類或幾類可能的模型,然後通過進一步的分析從中挑選一定的模型。
3、推斷分析:通常使用數理統計方法對所定模型或估計的可靠程度和精確程度作出推斷。
參考資料來源:網路-數據分析
『伍』 什麼是數據分析
數據分析(Data Analysis) 數據分析概念
數據分析是指用適當的統計方法對收集來的大量第一手資料和第二手資料進行分析,以求最大化地開發數據資料的功能,發揮數據的作用。是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
數據也稱觀測值,是實驗、測量、觀察、調查等的結果,常以數量的形式給出。
數據分析與數據挖掘密切相關,但數據挖掘往往傾向於關注較大型的數據集,較少側重於推理,且常常採用的是最初為另外一種不同目的而採集的數據。 數據分析的目的與意義
數據分析的目的是把隱沒在一大批看來雜亂無章的數據中的信息集中、萃取和提煉出來,以找出所研究對象的內在規律。
在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。數據分析是組織有目的地收集數據、分析數據,使之成為信息的過程。這一過程是質量管理體系的支持過程。在產品的整個壽命周期,包括從市場調研到售後服務和最終處置的各個過程都需要適當運用數據分析過程,以提升有效性。例如J.開普勒通過分析行星角位置的觀測數據,找出了行星運動規律。又如,一個企業的領導人要通過市場調查,分析所得數據以判定市場動向,從而制定合適的生產及銷售計劃。因此數據分析有極廣泛的應用范圍。 數據分析的功能
數據分析主要包含下面幾個功能:
1. 簡單數學運算(Simple Math)
2. 統計(Statistics)
3. 快速傅里葉變換(FFT)
4. 平滑和濾波(Smoothing and Filtering)
5. 基線和峰值分析(Baseline and Peak Analysis)
數據分析的類型
在統計學領域,有些人將數據分析劃分為描述性統計分析、探索性數據分析以及驗證性數據分析;其中,探索性數據分析側重於在數據之中發現新的特徵,而驗證性數據分析則側重於已有假設的證實或證偽。
探索性數據分析:是指為了形成值得假設的檢驗而對數據進行分析的一種方法,是對傳統統計學假設檢驗手段的補充。該方法由美國著名統計學家約翰·圖基(John Tukey)命名。
定性數據分析:又稱為「定性資料分析」、「定性研究」或者「質性研究資料分析」,是指對諸如詞語、照片、觀察結果之類的非數值型數據(或者說資料)的分析。
數據分析步驟
數據分析有極廣泛的應用范圍。典型的數據分析可能包含以下三個步:
1、探索性數據分析,當數據剛取得時,可能雜亂無章,看不出規律,通過作圖、造表、用各種形式的方程擬合,計算某些特徵量等手段探索規律性的可能形式,即往什麼方向和用何種方式去尋找和揭示隱含在數據中的規律性。
2、模型選定分析,在探索性分析的基礎上提出一類或幾類可能的模型,然後通過進一步的分析從中挑選一定的模型。
3、推斷分析,通常使用數理統計方法對所定模型或估計的可靠程度和精確程度作出推斷。
數據分析過程實施
數據分析過程的主要活動由識別信息需求、收集數據、分析數據、評價並改進數據分析的有效性組成。
一、識別信息需求
識別信息需求是確保數據分析過程有效性的首要條件,可以為收集數據、分析數據提供清晰的目標。識別信息需求是管理者的職責管理者應根據決策和過程式控制制的需求,提出對信息的需求。就過程式控制制而言,管理者應識別需求要利用那些信息支持評審過程輸入、過程輸出、資源配置的合理性、過程活動的優化方案和過程異常變異的發現。 二、收集數據
有目的的收集數據,是確保數據分析過程有效的基礎。組織需要對收集數據的內容、渠道、方法進行策劃。策劃時應考慮:
① 將識別的需求轉化為具體的要求,如評價供方時,需要收集的數據可能包括其過程能力、測量系統不確定度等相關數據;
② 明確由誰在何時何處,通過何種渠道和方法收集數據;
③ 記錄表應便於使用;
④ 採取有效措施,防止數據丟失和虛假數據對系統的干擾。
三、分析數據
分析數據是將收集的數據通過加工、整理和分析、使其轉化為信息,通常用方法有:
老七種工具,即排列圖、因果圖、分層法、調查表、散步圖、直方圖、控制圖;
新七種工具,即關聯圖、系統圖、矩陣圖、KJ法、計劃評審技術、PDPC法、矩陣數據圖;
四、數據分析過程的改進
數據分析是質量管理體系的基礎。組織的管理者應在適當時,通過對以下問題的分析,評估其有效性:
① 提供決策的信息是否充分、可信,是否存在因信息不足、失准、滯後而導致決策失誤的問題;
② 信息對持續改進質量管理體系、過程、產品所發揮的作用是否與期望值一致,是否在產品實現過程中有效運用數據分析;
③ 收集數據的目的是否明確,收集的數據是否真實和充分,信息渠道是否暢通;
④ 數據分析方法是否合理,是否將風險控制在可接受的范圍;
⑤ 數據分析所需資源是否得到保障。