A. 大數據時代給信息安全帶來的挑戰
大數據時代給信息安全帶來的挑戰
在大數據時代,商業生態環境在不經意間發生了巨大變化:無處不在的智能終端、隨時在線的網路傳輸、互動頻繁的社交網路,讓以往只是網頁瀏覽者的網民的面孔從模糊變得清晰,企業也有機會進行大規模的精準化的消費者行為研究。大數據藍海將成為未來競爭的制高點。
大數據在成為競爭新焦點的同時,不僅帶來了更多安全風險,同時也帶來了新機遇。
一、大數據成為網路攻擊的顯著目標。
在網路空間,大數據是更容易被「發現」的大目標。一方面,大數據意味著海量的數據,也意味著更復雜、更敏感的數據,這些數據會吸引更多的潛在攻擊者。另一方面,數據的大量匯集,使得黑客成功攻擊一次就能獲得更多數據,無形中降低了黑客的進攻成本,增加了「收益率」。
二、大數據加大隱私泄露風險。
大量數據的匯集不可避免地加大了用戶隱私泄露的風險。一方面,數據集中存儲增加了泄露風險,而這些數據不被濫用,也成為人身安全的一部分。另一方面,一些敏感數據的所有權和使用權並沒有明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題。
三、大數據威脅現有的存儲和安防措施。
大數據存儲帶來新的安全問題。數據大集中的後果是復雜多樣的數據存儲在一起,很可能會出現將某些生產數據放在經營數據存儲位置的情況,致使企業安全管理不合規。大數據的大小也影響到安全控制措施能否正確運行。安全防護手段的更新升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。
四、大數據技術成為黑客的攻擊手段。
在企業用數據挖掘和數據分析等大數據技術獲取商業價值的同時,黑客也在利用這些大數據技術向企業發起攻擊。黑客會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使黑客的攻擊更加精準。此外,大數據也為黑客發起攻擊提供了更多機會。黑客利用大數據發起僵屍網路攻擊,可能會同時控制上百萬台傀儡機並發起攻擊。
五、大數據成為高級可持續攻擊的載體。
傳統的檢測是基於單個時間點進行的基於威脅特徵的實時匹配檢測,而高級可持續攻擊(APT)是一個實施過程,無法被實時檢測。此外,由於大數據的價值低密度特性,使得安全分析工具很難聚焦在價值點上,黑客可以將攻擊隱藏在大數據中,給安全服務提供商的分析製造很大困難。黑客設置的任何一個會誤導安全廠商目標信息提取和檢索的攻擊,都會導致安全監測偏離應有方向。
六、大數據技術為信息安全提供新支撐。
當然,大數據也為信息安全的發展提供了新機遇。大數據正在為安全分析提供新的可能性,對於海量數據的分析有助於信息安全服務提供商更好地刻畫網路異常行為,從而找出數據中的風險點。對實時安全和商務數據結合在一起的數據進行預防性分析,可識別釣魚攻擊,防止詐騙和阻止黑客入侵。網路攻擊行為總會留下蛛絲馬跡,這些痕跡都以數據的形式隱藏在大數據中,利用大數據技術整合計算和處理資源有助於更有針對性地應對信息安全威脅,有助於找到攻擊的源頭。
B. 大數據的弊端是什麼
大數據的弊端是可能造成數據泡沫風險。大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
結構
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
C. 查詢第三方大數據報告有什麼危險
查詢第三方大數據報告帶來的危險:
1、數據收集時帶來的風險:在大數據環境中,可以通過用戶的網址搜索記錄、手機上網記錄、淘寶購物記錄等信息來獲取用戶的信息,如興趣愛好、日常生活等。
2、安全漏洞多,數據泄露風險大:部分大型公司的安全漏洞比較多,而且這些公司也可能會存在對用戶數據的違規使用,其安全協議過於寬松。
3、在數據分析和挖掘的時候,可能會分析出用戶的隱私信息,匿名就再無作用:在分析與挖掘有價值的信息時,很大可能會分析出用戶的隱私信息,不但有泄露隱私的風險,同時也可能導致隱私保護的方法失效,例如匿名。
D. 現代大數據技術存在什麼弊端
1、現如今,大數據技術存在最大的兩個弊端就是隱私和限制。
2、大數據技術的利也建立在兩個弊端之中,大數據技術的利大多時候體現出「便利」這兩個字,而「便利」的前提就需要貢獻我們的數據;而很多時候看似大數據非常方便,但它也有諸多的限制,比如你搜索了什麼類型的詞條各類應用接收到這一數據後也只會推送與這個詞條相關的東西,就局限在了這一個范圍內。
3、比起限制,很多人更擔心隱私這一問題。現代人的消遣方式更多的是使用電子設備連接網路來娛樂,比如看劇、看小說、玩游戲、逛某寶、刷某音等等,無論是前面哪一種,我們使用過這些應用的數據都會被接收到後台,從而通過計算又給我們推薦相關的我們可能感興趣的東西。
E. 大數據面臨哪些安全與隱私問題
(一)大數據遭受異常流量攻擊
大數據所存儲的數據非常巨大,往往採用分布式的方式進行存儲,而正是由於這種存儲方式,存儲的路徑視圖相對清晰,而數據量過大,導致數據保護,相對簡單,黑客較為輕易利用相關漏洞,實施不法操作,造成安全問題。由於大數據環境下終端用戶非常多,且受眾類型較多,對客戶身份的認證環節需要耗費大量處理能力。由於APT攻擊具有很強的針對性,且攻擊時間長,一旦攻擊成功,大數據分析平台輸出的最終數據均會被獲取,容易造成的較大的信息安全隱患。
(二)大數據信息泄露風險
大數據平台的信息泄露風險在對大數據進行數據採集和信息挖掘的時候,要注重用戶隱私數據的安全問題,在不泄露用戶隱私數據的前提下進行數據挖掘。需要考慮的是在分布計算的信息傳輸和數據交換時保證各個存儲點內的用戶隱私數據不被非法泄露和使用是當前大數據背景下信息安全的主要問題。同時,當前的大數據數據量並不是固定的,而是在應用過程中動態增加的,但是,傳統的數據隱私保護技術大多是針對靜態數據的,所以,如何有效地應對大數據動態數據屬性和表現形式的數據隱私保護也是要注重的安全問題。最後,大數據的數據遠比傳統數據復雜,現有的敏感數據的隱私保護是否能夠滿足大數據復雜的數據信息也是應該考慮的安全問題。
(三)大數據傳輸過程中的安全隱患
數據生命周期安全問題。伴隨著大數據傳輸技術和應用的快速發展,在大數據傳輸生命周期的各個階段、各個環節,越來越多的安全隱患逐漸暴露出來。比如,大數據傳輸環節,除了存在泄漏、篡改等風險外,還可能被數據流攻擊者利用,數據在傳播中可能出現逐步失真等。又如,大數據傳輸處理環節,除數據非授權使用和被破壞的風險外,由於大數據傳輸的異構、多源、關聯等特點,即使多個數據集各自脫敏處理,數據集仍然存在因關聯分析而造成個人信息泄漏的風險。
基礎設施安全問題。作為大數據傳輸匯集的主要載體和基礎設施,雲計算為大數據傳輸提供了存儲場所、訪問通道、虛擬化的數據處理空間。因此,雲平台中存儲數據的安全問題也成為阻礙大數據傳輸發展的主要因素。
個人隱私安全問題。在現有隱私保護法規不健全、隱私保護技術不完善的條件下,互聯網上的個人隱私泄露失去管控,微信、微博、QQ等社交軟體掌握著用戶的社會關系,監控系統記錄著人們的聊天、上網、出行記錄,網上支付、購物網站記錄著人們的消費行為。但在大數據傳輸時代,人們面臨的威脅不僅限於個人隱私泄露,還在於基於大數據傳輸對人的狀態和行為的預測。近年來,國內多省社保系統個人信息泄露、12306賬號信息泄露等大數據傳輸安全事件表明,大數據傳輸未被妥善處理會對用戶隱私造成極大的侵害。因此,在大數據傳輸環境下,如何管理好數據,在保證數據使用效益的同時保護個人隱私,是大數據傳輸時代面臨的巨大挑戰之一。
(四)大數據的存儲管理風險
大數據的數據類型和數據結構是傳統數據不能比擬的,在大數據的存儲平台上,數據量是非線性甚至是指數級的速度增長的,各種類型和各種結構的數據進行數據存儲,勢必會引發多種應用進程的並發且頻繁無序的運行,極易造成數據存儲錯位和數據管理混亂,為大數據存儲和後期的處理帶來安全隱患。當前的數據存儲管理系統,能否滿足大數據背景下的海量數據的數據存儲需求,還有待考驗。不過,如果數據管理系統沒有相應的安全機制升級,出現問題後則為時已晚。
F. 大數據帶來的隱患 數據壟斷
大數據帶來的隱患:數據壟斷
在信息爆炸的社會,受眾面對海量信息,往往需要花費大量的時間和精力進行篩選。但藉助來自移動互聯網和社會化媒體所提供的豐富數據資源(例如用戶的地理位置、關系網、興趣圖譜等信息),以及日臻精確的挖掘和分析技術,媒體可以了解受眾的心理、 需求以及行為習慣等,並以此為基礎提供更符合受眾需要的、個性化的內容服務與廣告營銷。這樣的精準傳播會加深受眾好感,提高用戶忠誠度。
以往觸不可及的夢想在大數據時代實現了。而最深刻的革命其實不在外界,而在人類的思維領域。
人類思維的轉向:人類的態度、情緒、行為等都可以變為數據進行分析和預測
人類內心深處隱秘的慾望、需求、情感是可以洞悉並預測的嗎?這是一個長久以來盤亘在心理學家、行為學家、哲學家心中的困惑,而大數據時代的統計學家、數據挖掘專家則做出了肯定而樂觀的回答。現在,「情感分析」、「預測模型」的應用已經漸入佳境,企業和媒體已經可以通過「情感分析」來確定社交媒體上用戶群的態度,而推特(Twitter)甚至在2012年美國大選時對用戶每天推文和評論的關鍵詞進行量化跟蹤,計算出「政治指數」來判斷民心所向。
大數據技術使得人類的態度、情緒、行為等以往認為難以測量的方面,都可以變為數據來進行分析和預測。日常生活里的可量化維度從未得到如此淋漓盡致的挖掘與利用,而數學模型也在更廣泛的領域里得到了重視。以往的統計分析強調的是因果關系,而現在的大數據研究更注重相關關系。因果關系的討論時常不夠全面,而對相關關系的把握更能夠產生效用。從對「為什麼」的疑問到對「是什麼」的追尋,這體現了人類對世界的探索和理解有了更豐富的思路。
也許最極端的結論來自全球復雜網路研究權威艾伯特-拉斯洛·巴拉巴西。在一書中,他宣稱人類行為93%是可以預測的:「當我們將生活數字化、公式化以及模型化的時候,我們會發現其實大家都非常相似。我們都具有爆發式,而且非常規律。看上去很隨意、很偶然,但卻極其容易被預測。」「爆發」即指人們的工作、娛樂及其他種種活動都有間歇性,會在短期內突然爆發,然後又幾乎陷入沉寂。人類行為並非隨機的小概率事件,而是在意向作用下非常規的突變行為。
不論巴拉巴西的理論是否贏得主流的共識,這些發現至少表明,在技術以外,大數據時代向人類昭示出越來越多富有啟發意義的世界觀和歷史觀。
大數據時代的隱憂:數據壟斷的困境
首先,數據的可接近性並不就使得其使用合乎倫理。大數據為監測和預示人們的生活提供了極大的方便,然而個人隱私也隨之暴露在無形的「第三隻眼」之下。無論是電子商務、搜索引擎還是微博等互聯網服務商都對用戶行為數據進行了挖掘和分析,以獲得商業利益,這一過程中不可避免地威脅到普通人的隱私。以往人們認為網路的匿名化可以避免個人信息的泄露,然而大數據時代里,數據的交叉檢驗會使得匿名化失效。許多數據在收集時並非具有目的性,但隨著技術的快速進步,這些數據最終被開發出新的用途,而個人並不知情。不僅如此,運用大數據還可能預測並控制人類的潛在行為,在缺乏有效倫理機制下有可能造成對公平、自由、尊嚴等人性價值的踐踏。
其次,越大的數據並非總是越好的數據。對數據的盲目依賴會導致思維和決策的僵化。當越來越多的事物被量化,人們也更加容易陷入只看重數據的誤區里。關於數據在何時何地有意義的爭議,已經不再局限於「標准化考試是否能夠衡量學生素質」之類的討論,而是拓展到更加廣闊的領域。另一方面,如果企業甚至政府在決策過程中濫用數據資料或者出現分析失誤,將會嚴重損害民眾的安全和利益。如何避免成為數據的奴隸,已經成為迫在眉睫的問題。
第三,大數據的有限接入產生新的壟斷和數碼溝。面對大數據,誰能接入?為何目的?在何種情境下?受到怎樣的限制?數據大量積累的同時,卻也出現了數據壟斷的困境。一些企業或國家為了維護自己的利益而拒絕信息的流動,這不僅浪費了數據資源,而且會阻礙創新的實現。與互聯網時代的數碼溝問題一樣,大數據的應用同樣存在著接入和技能的雙重鴻溝。對於數據的挖掘和使用主要限於那些具有計算機開發和使用背景的專業人士,這也就意味著誰將占據優勢、誰會敗下陣來,以及由此而來的面對「誰更有權力」的拷問。
進入大數據時代,數據的掌握者們是否會平等地交換數據,促進數據分析的標准化,在數據公開的同時如何與知識產權的保護相結合,不僅涉及到政府的政策,也與企業的未來規劃息息相關。