導航:首頁 > 數據處理 > 做伺服器數據開發掌握哪些語言

做伺服器數據開發掌握哪些語言

發布時間:2023-03-03 20:25:45

大數據開發常用的編程語言有哪些

1、Python語言
如果你的數據科學家不使用R,他們可能就會徹底了解Python。十多年來,Python在學術界當中一直很流行,尤其是在自然語言處理(NLP)等領域。因而,如果你有一個需要NLP處理的項目,就會面臨數量多得讓人眼花繚亂的選擇,包括經典的NTLK、使用GenSim的主題建模,或者超快、准確的spaCy。同樣,說到神經網路,Python同樣游刃有餘,有Theano和Tensorflow;隨後還有面向機器學習的scikit-learn,以及面向數據分析的NumPy和Pandas。
還有Juypter/iPython――這種基於Web的筆記本伺服器框架讓你可以使用一種可共享的日誌格式,將代碼、圖形以及幾乎任何對象混合起來。這一直是Python的殺手級功能之一,不過這年頭,這個概念證明大有用途,以至於出現在了奉行讀取-讀取-輸出-循環(REPL)概念的幾乎所有語言上,包括Scala和R。
Python往往在大數據處理框架中得到支持,但與此同時,它往往又不是「一等公民」。比如說,Spark中的新功能幾乎總是出現在Scala/Java綁定的首位,可能需要用PySpark編寫面向那些更新版的幾個次要版本(對Spark Streaming/MLLib方面的開發工具而言尤為如此)。
與R相反,Python是一種傳統的面向對象語言,所以大多數開發人員用起來會相當得心應手,而初次接觸R或Scala會讓人心生畏懼。一個小問題就是你的代碼中需要留出正確的空白處。這將人員分成兩大陣營,一派覺得「這非常有助於確保可讀性」,另一派則認為,我們應該不需要就因為一行代碼有個字元不在適當的位置,就要迫使解釋器讓程序運行起來。
2、R語言
在過去的幾年時間中,R語言已經成為了數據科學的寵兒——數據科學現在不僅僅在書獃子一樣的統計學家中人盡皆知,而且也為華爾街交易員,生物學家,和矽谷開發者所家喻戶曉。各種行業的公司,例如Google,Facebook,美國銀行,以及紐約時報都使用R語言,R語言正在商業用途上持續蔓延和擴散。
R語言有著簡單而明顯的吸引力。使用R語言,只需要短短的幾行代碼,你就可以在復雜的數據集中篩選,通過先進的建模函數處理數據,以及創建平整的圖形來代表數字。它被比喻為是Excel的一個極度活躍版本。
R語言最偉大的資本是已圍繞它開發的充滿活力的生態系統:R語言社區總是在不斷地添加新的軟體包和功能到它已經相當豐富的功能集中。據估計,超過200萬的人使用R語言,並且最近的一次投票表明,R語言是迄今為止在科學數據中最流行的語言,被61%的受訪者使用(其次是Python,39%)。
3、JAVA
Java,以及基於Java的框架,被發現儼然成為了矽谷最大的那些高科技公司的骨骼支架。 「如果你去看Twitter,LinkedIn和Facebook,那麼你會發現,Java是它們所有數據工程基礎設施的基礎語言,」Driscoll說。
Java不能提供R和Python同樣質量的可視化,並且它並非統計建模的最佳選擇。但是,如果你移動到過去的原型製作並需要建立大型系統,那麼Java往往是你的最佳選擇。
4、Hadoop和Hive
一群基於Java的工具被開發出來以滿足數據處理的巨大需求。Hadoop作為首選的基於Java的框架用於批處理數據已經點燃了大家的熱情。Hadoop比其他一些處理工具慢,但它出奇的准確,因此被廣泛用於後端分析。它和Hive——一個基於查詢並且運行在頂部的框架可以很好地結對工作。

⑵ 數據分析師應該學習哪些語言

1、R語言:免費、開源;專門為統計和數據分析而開發,基礎安裝也包含全面的統計功能和函數;數據可視化功能強大。


2、Python語言:是一門主流編程語言,有著廣泛的在線支持;有諸如谷歌 Tensor flow 這樣優秀的 package,使得機器學習框架都偏向於採用Python語言;易於學習,入門容易。


3、SQL語言:SQL 是一種資料庫查詢和程序設計語言,用於存取數據以及查詢、更新和管理關系資料庫系統,是最重要的關系資料庫操作語言。


4、Java語言:Java 是靜態面向對象編程語言的代表,具有面向對象、分布式、平台獨立與可移植性、多線程、動態性等特點,目前由甲骨文公司提供技術支持


5、Scala語言:一門多範式的編程語言,類似 Java,於 2004 年問世,設計初衷是實現可伸縮的語言,並集成面向對象編程和函數式編程的各種特性。


6、Julia語言:是一款剛出現沒幾年的面向科學計算的高性能動態高級程序設計語言。

⑶ 大數據專業主要學習什麼語言

大數據專業需要學習哪些技術:


一、編程語言


想要學習大數據技術,首先要掌握一門基礎編程語言。Java編程語言的使用率最廣泛,因此就業機會會更多一些,而Python編程語言正在高速推廣應用中,同時學習Python的就業方向會更多一些。


二、Linux


學習大數據一定要掌握一定的Linux技術知識,不要求技術水平達到就業的層次,但是一定要掌握Linux系統的基本操作。能夠處理在實際工作中遇到的相關問題。


三、SQL


大數據的特點就是數據量非常大,因此大數據的核心之一就是數據倉儲相關工作。因此大數據工作對於資料庫要求是非常的高。甚至很多公司單獨設置資料庫開發工程師。


四、Hadoop


Hadoop是分布式系統的基礎框架,以一種可靠、高效、可伸縮的方式進行數據處理。具有高可靠性、高擴展性、高效性、高容錯性、低成本等優點,從事大數據相關工作Hadoop是必學的知識點。


五、Spark


Spark是專門為大規模數據處理而設計的快速通用的計算引擎。可以用它來完成各種各樣的運算,包括SQL查詢、文本處理、機器學習等等。


六、機器學習


機器學習是目前人工智慧領域的核心技術,在大數據專業中也有非常廣泛的引用。在演算法和自動化的發展過程中,機器學習扮演著非常重要的角色。可以大大拓展自己的就業方向。

互聯網行業里大數據和雲智能是當下最重要板塊,企業藉助大數據技術不僅能避免企業發展時會面臨的各種風險,更能解決發展過程中所遇到的種種難題。近些年來大數據的公司越來越多,但是大數據人才需求還存在著很大缺口,為了響應市場需求未來我國還會需要更多的大數據人才。網路、阿里、京東等互聯網高企依仗自身的強大技術和數據優勢,均已將大數據作為企業的重要戰略部署。


大數據專業未來就業方向解析:


一、ETL研發


企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL.


二、Hadoop開發


隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。


三、可視化工具開發


可視化開發就是在可視化工具提供的圖形用戶界面上,通過操作界面元素,有可視化開發工具自動生成相關應用軟體,輕松跨越多個資源和層次連接所有數據。過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。


四、信息架構開發


大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。

五、數據倉庫研究


為方便企業決策,出於分析性報告和決策支持的目的而創建的數據倉庫研究崗位是一種所有類型數據的戰略集合。為企業提供業務智能服務,指導業務流程改進和監視時間、成本、質量和控制。


六、OLAP開發


OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。


七、數據科學研究


數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。


八、數據預測分析


營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。


九、企業數據管理


企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。


十、數據安全研究


數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。


大數據的特點就是能夠靈活、快速、高效的響應各種市場需求。大數據的受眾領域非常廣泛,不僅改善著人們的社會活動和生活方式,運用好大數據技術還能為企業帶了更多的商機和商業價值。大數據不僅與IT行業關系密切,眾多行業都已經開始了大數據運營的布局,例如金融、醫療、政府等。撼地大數據就是以大數據技術為基礎研發出了屬於自己的大數據數智招商系統,為產業招商打造了一個精準招商服務雲平台,極大的改善了現階段產業園招商難的窘境。

⑷ 大數據學習需要什麼語言

1,大數據需要的語言Java

java可以說是大數據最基礎的編程語言,據我這些年的經驗,我接觸的很大一部分的大數據開發都是從Jave Web開發轉崗過來的(當然也不是絕對我甚至見過產品轉崗大數據開發的,逆了個天)。

一是因為大數據的本質無非就是海量數據的計算,查詢與存儲,後台開發很容易接觸到大數據量存取的應用場景

二就是java語言本事了,天然的優勢,因為大數據的組件很多都是用java開發的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入學習,填上生產環境中踩到的各種坑,必須得先學會java然後去啃源碼。
說到啃源碼順便說一句,開始的時候肯定是會很難,需要對組件本身和開發語言都有比較深入的理解,熟能生巧慢慢來,等你過了這個階段,習慣了看源碼解決問題的時候你會發現源碼真香。

scala和java很相似都是在jvm運行的語言,在開發過程中是可以無縫互相調用的。Scala在大數據領域的影響力大部分都是來自社區中的明星Spark和kafka,這兩個東西大家應該都知道(後面我會有文章多維度介紹它們),它們的強勢發展直接帶動了Scala在這個領域的流行。

Python和Shell

shell應該不用過多的介紹非常的常用,屬於程序猿必備的通用技能。python更多的是用在數據挖掘領域以及寫一些復雜的且shell難以實現的日常腳本。

2,分布式計算,
什麼是分布式計算?分布式計算研究的是如何把一個需要非常巨大的計算能力才能解決的問題分成許多小的部分,然後把這些部分分配給許多伺服器進行處理,最後把這些計算結果綜合起來得到最終的結果。

舉個栗子,就像是組長把一個大項目拆分,讓組員每個人開發一部分,最後將所有人代碼merge,大項目完成。聽起來好像很簡單,但是真正參與過大項目開發的人一定知道中間涉及的內容可不少。

分布式計算目前流行的工具有:

離線工具Spark,MapRece等
實時工具Spark Streaming,Storm,Flink等
這幾個東西的區別和各自的應用場景我們之後再聊。

3,分布式存儲
傳統的網路存儲系統採用的是集中的存儲伺服器存放所有數據,單台存儲伺服器的io能力是有限的,這成為了系統性能的瓶頸,同時伺服器的可靠性和安全性也不能滿足需求,尤其是大規模的存儲應用。

分布式存儲系統,是將數據分散存儲在多台獨立的設備上。採用的是可擴展的系統結構,利用多台存儲伺服器分擔存儲負荷,利用位置伺服器定位存儲信息,它不但提高了系統的可靠性、可用性和存取效率,還易於擴展。

⑸ 伺服器端編程語言有哪些

伺服器端編程分為:Web伺服器端編程(Web Server)、還是應用伺服器端編程(App Server)。Web伺服器端編程有 ASP, ASP.NET, JSP, PHP, python 等等。應用伺服器端編程
有 C/C++, C#, Java, python 等等。

伺服器端語言指的是在伺服器運行的動態語言,相對的如CSS、JAVASCRIPT(客戶端部分)可以叫作客戶端語言,伺服器端運行的動態語言主要是對資料庫的操作和訪問,當然還有其他的一些功能。但主要是對資料庫的操作。

舉例來說,要判斷用戶輸入的用戶名是中文還是英文,有沒有帶數字,這樣的功能可以用客戶端腳本語言來完成,但要判斷這個用戶有沒有在網站進行過注冊,由於需要將用戶輸入的用戶名與資料庫中的信息進行比對,因此一定需要伺服器端運行的動態語言才行。

閱讀全文

與做伺服器數據開發掌握哪些語言相關的資料

熱點內容
市場法中參照物差異有哪些 瀏覽:93
寶雞鳥市場在哪裡 瀏覽:576
寧波三山村菜市場怎麼樣 瀏覽:509
申請執行有哪些信息 瀏覽:754
鴨產品有什麼優勢 瀏覽:262
還有哪些物體利用了納米技術 瀏覽:548
微信如何防撤銷信息 瀏覽:294
批發市場推銷包怎麼樣 瀏覽:33
科羅娜啤酒怎麼代理 瀏覽:696
推廣自己的產品怎麼操作 瀏覽:112
phpmysql如何進入資料庫 瀏覽:891
臨展如何寫技術要求 瀏覽:55
服裝市場如何砍價 瀏覽:26
你吃過什麼減肥產品最有效 瀏覽:825
程序員哪個可以讓你變富有 瀏覽:287
蕭山狗市場在哪裡 瀏覽:492
南京鐵道職業技術學費多少 瀏覽:274
鳥市菜市場在哪裡 瀏覽:907
excel如何前後數據一致中間不變 瀏覽:213
4s店怎麼代理汽車 瀏覽:650