❶ 什麼是數據持久化為什麼要持久化
數據持久化就是將內存中的數據模型轉換為存儲模型,以及將存儲模型轉換為內存中的數據模型的統稱. 數據模型可以是任何數據結構或對象模型,存儲模型可以是關系模型、XML、二進制流等。cmp和Hibernate只是對象模型到關系模型之間轉換的不同實現。
數據持久化對象的基本操作有:保存、更新、刪除、查詢等。
Hibernate框架中數據持久化機制:
在業務程序與資料庫之間,Hibernate框架使用Session會話,來完成數據的提交、更新、刪除、查詢等等。
1、向資料庫提交數據
在程序中保存對象時,會把數據保存到Session會話中,然後根據框架的配置文件,自動或手動決定什麼時候把這種保存提交到資料庫。
2、從資料庫中查詢數據
在查詢數據之前,需要清理緩存(手動清理,或者通過配置文件框架自動清理)清理緩存的目的是為了使Session會話中的數據與資料庫中的數據保持一致。然後程序只需要查詢Session會話中的數據即可。
(1)數據多什麼化擴展閱讀:
使用數據持久化有以下好處:
1、程序代碼重用性強,即使更換資料庫,只需要更改配置文件,不必重寫程序代碼。
2、業務邏輯代碼可讀性強,在代碼中不會有大量的SQL語言,提高程序的可讀性。
3、持久化技術可以自動優化,以減少對資料庫的訪問量,提高程序運行效率。
❷ 什麼是結構化數據,非結構化數據和半結構化數據
相對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
欄位可根據需要擴充,即欄位數目不定,可稱為半結構化數據,例如Exchange存儲的數據。
非結構化資料庫
在信息社會,信息可以劃分為兩大類。一類信息能夠用數據或統一的結構加以表示,我們稱之為結構化數據,如數字、符號;而另一類信息無法用數字或統一的結構表示,如文本、圖像、聲音、網頁等,我們稱之為非結構化數據。結構化數據屬於非結構化數據,是非結構化數據的特例
數據清洗從名字上也看的出就是把「臟」的「洗掉」。因為數據倉庫中的數據是面向某一主題的數據的集合,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為「臟數據」。我們要按照一定的規則把「臟數據」「洗掉」,這就是數據清洗.而數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之後再進行抽取。不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。
(1)不完整的數據
這一類數據主要是一些應該有的信息缺失,如供應商的名稱、分公司的名稱、客戶的區域信息缺失、業務系統中主表與明細表不能匹配等。對於這一類數據過濾出來,按缺失的內容分別寫入不同Excel文件向客戶提交,要求在規定的時間內補全。補全後才寫入數據倉庫。
(2)錯誤的數據
這一類錯誤產生的原因是業務系統不夠健全,在接收輸入後沒有進行判斷直接寫入後台資料庫造成的,比如數值數據輸成全形數字字元、字元串數據後面有一個回車操作、日期格式不正確、日期越界等。這一類數據也要分類,對於類似於全形字元、數據前後有不可見字元的問題,只能通過寫SQL語句的方式找出來,然後要求客戶在業務系統修正之後抽取。日期格式不正確的或者是日期越界的這一類錯誤會導致ETL運行失敗,這一類錯誤需要去業務系統資料庫用SQL的方式挑出來,交給業務主管部門要求限期修正,修正之後再抽取。
(3)重復的數據
對於這一類數據——特別是維表中會出現這種情況——將重復數據記錄的所有欄位導出來,讓客戶確認並整理。
數據清洗是一個反復的過程,不可能在幾天內完成,只有不斷的發現問題,解決問題。對於是否過濾,是否修正一般要求客戶確認,對於過濾掉的數據,寫入Excel文件或者將過濾數據寫入數據表,在ETL開發的初期可以每天向業務單位發送過濾數據的郵件,促使他們盡快地修正錯誤,同時也可以做為將來驗證數據的依據。數據清洗需要注意的是不要將有用的數據過濾掉,對於每個過濾規則認真進行驗證,並要用戶確認。
隨著網路技術的發展,特別是Internet和Intranet技術的飛快發展,使得非結構化數據的數量日趨增大。這時,主要用於管理結構化數據的關系資料庫的局限性暴露地越來越明顯。因而,資料庫技術相應地進入了「後關系資料庫時代」,發展進入基於網路應用的非結構化資料庫時代。所謂非結構化資料庫,是指資料庫的變長紀錄由若干不可重復和可重復的欄位組成,而每個欄位又可由若干不可重復和可重復的子欄位組成。簡單地說,非結構化資料庫就是欄位可變的資料庫。
我國非結構化資料庫以北京國信貝斯(iBase)軟體有限公司的iBase資料庫為代表。IBase資料庫是一種面向最終用戶的非結構化資料庫,在處理非結構化信息、全文信息、多媒體信息和海量信息等領域以及Internet/Intranet應用上處於國際先進水平,在非結構化數據的管理和全文檢索方面獲得突破。它主要有以下幾個優點:
(1)Internet應用中,存在大量的復雜數據類型,iBase通過其外部文件數據類型,可以管理各種文檔信息、多媒體信息,並且對於各種具有檢索意義的文檔信息資源,如HTML、DOC、RTF、TXT等還提供了強大的全文檢索能力。
(2)它採用子欄位、多值欄位以及變長欄位的機制,允許創建許多不同類型的非結構化的或任意格式的欄位,從而突破了關系資料庫非常嚴格的表結構,使得非結構化數據得以存儲和管理。
(3)iBase將非結構化和結構化數據都定義為資源,使得非結構資料庫的基本元素就是資源本身,而資料庫中的資源可以同時包含結構化和非結構化的信息。所以,非結構化資料庫能夠存儲和管理各種各樣的非結構化數據,實現了資料庫系統數據管理到內容管理的轉化。
(4)iBase採用了面向對象的基石,將企業業務數據和商業邏輯緊密結合在一起,特別適合於表達復雜的數據對象和多媒體對象。
(5)iBase是適應Internet發展的需要而產生的資料庫,它基於Web是一個廣域網的海量資料庫的思想,提供一個網上資源管理系統iBase Web,將網路伺服器(WebServer)和資料庫伺服器(Database Server)直接集成為一個整體,使資料庫系統和資料庫技術成為Web的一個重要有機組成部分,突破了資料庫僅充當Web體系後台角色的局限,實現資料庫和Web的有機無縫組合,從而為在Internet/Intranet上進行信息管理乃至開展電子商務應用開辟了更為廣闊的領域。
(6)iBase全面兼容各種大中小型的資料庫,對傳統關系資料庫,如Oracle、Sybase、SQLServer、DB2、Informix等提供導入和鏈接的支持能力。
通過從上面的分析後我們可以預言,隨著網路技術和網路應用技術的飛快發展,完全基於Internet應用的非結構化資料庫將成為繼層次資料庫、網狀資料庫和關系資料庫之後的又一重點、熱點技術
❸ 信息化、數字化和數據化有什麼區別
信息化是指將企業在生產經營過程中所發生的業務信息進行記錄、儲存和管控,用來提供給各層次的人了解一切動態業務信息,如「現在業務情況如何」、「流程進展到什麼階段」,讓企業資源合理配置。信息化,是一種對物理世界的信息描述,本質是一種管理手段,側重於業務信息的搭建與管理。此時,業務流程是核心,信息系統是工具,過程中產生的數據只是一種副產品,信息化還是物理世界的思維模式在進行的。例如,目前經常看到的OA辦公自動化系統,CRM系統,MES系統等等,利用信息系統將管理信息化,助力企業高效管理。
數字化是指將許多復雜的、難以估計的信息通過一定的方式變成計算機能處理的0和1的二進制碼,形成計算機里的數字孿生。如果說信息化是物理世界思維模式,那麼數字化就是通過移動互聯網、物聯網、區塊鏈、AR等這樣的數字化工具來實現更寬更廣的數字化世界。物理世界正在被重構,並一一搬到數字化世界當中,這個過程,是技術實現的過程,更是思維模式轉變的過程。
而數字化帶來了數據化。數據代表著對某一件事物的描述,通過記錄、分析、重組數據,實現對業務的指導。這就是「數據化」。數據化最直觀的就是企業各式各樣的報表和報告。數據化是將數字化的信息進行條理化,通過智能分析、多維分析、查詢回溯,為決策提供有力的數據支撐。如果說信息化和數字化更偏向於系統性概念,那麼,數據化則更多地是涉及到了執行層的概念,一切業務數據化。以數據分析為切入點,通過數據發現問題、分析問題、解決問題,打破傳統的經驗驅動決策的方式,實現科學決策。
信息化和數字化絕對不是割裂的、對立的,而是聯系的、發展的。
信息化→業務數據化
信息化多半執行業務數據化,即我們所常說的「業務數據化」,它是將整個業務以數據的形式記錄下來,如某家公司用ERP系統管理采購、用金蝶系統管理財務、用用友CRM系統管理銷售,等等。
數字化→數據業務化
而數字化並不會脫離信息化。信息化建設過程中各個信息系統之間缺乏互通,於是形成了信息孤島,而數字化則打通了各個信息孤島,讓數據得以連接。通過對這些數據進行綜合地、多維地分析,對企業的運作邏輯進行數字建模,指導並服務於企業的日常運營。
有人說:數字化是信息化的高階階段,是信息化的廣泛深入運用,是從收集數據、分析數據到預測數據、經營數據的延申。而脫離了信息化的支撐空談數字化也只不過是空中樓閣。
❹ 數據標准化的方法
在數據分析之前,我們通常需要先將數據標准化(normalization),利用標准化後的數據進行數據分析。數據標准化也就是統計數據的指數化。數據標准化處理主要包括數據同趨化處理和無量綱化處理兩個方面。數據同趨化處理主要解決不同性質數據問題,對不同性質指標直接加總不能正確反映不同作用力的綜合結果,須先考慮改變逆指標數據性質,使所有指標對測評方案的作用力同趨化,再加總才能得出正確結果。數據無量綱化處理主要解決數據的可比性。數據標准化的方法有很多種,常用的有「最小—最大標准化」、「Z-score標准化」和「按小數定標標准化」等。經過上述標准化處理,原始數據均轉換為無量綱化指標測評值,即各指標值都處於同一個數量級別上,可以進行綜合測評分析。
一、Min-max 標准化
min-max標准化方法是對原始數據進行線性變換。設minA和maxA分別為屬性A的最小值和最大值,將A的一個原始值x通過min-max標准化映射成在區間[0,1]中的值x',其公式為:
新數據=(原數據-極小值)/(極大值-極小值)
二、z-score 標准化
這種方法基於原始數據的均值(mean)和標准差(standard deviation)進行數據的標准化。將A的原始值x使用z-score標准化到x'。
z-score標准化方法適用於屬性A的最大值和最小值未知的情況,或有超出取值范圍的離群數據的情況。
新數據=(原數據-均值)/標准差
spss默認的標准化方法就是z-score標准化。
用Excel進行z-score標准化的方法:在Excel中沒有現成的函數,需要自己分步計算,其實標准化的公式很簡單。步驟如下:1.求出各變數(指標)的算術平均值(數學期望)xi和標准差si ;2.進行標准化處理:zij=(xij-xi)/si其中:zij為標准化後的變數值;xij為實際變數值。3.將逆指標前的正負號對調。標准化後的變數值圍繞0上下波動,大於0說明高於平均水平,小於0說明低於平均水平。
三、Decimal scaling小數定標標准化
這種方法通過移動數據的小數點位置來進行標准化。小數點移動多少位取決於屬性A的取值中的最大絕對值。將屬性A的原始值x使用decimal scaling標准化到x'的計算方法是:
x'=x/(10^j)
其中,j是滿足條件的最小整數。
例如 假定A的值由-986到917,A的最大絕對值為986,為使用小數定標標准化,我們用1000(即,j=3)除以每個值,這樣,-986被規范化為-0.986。
注意,標准化會對原始數據做出改變,因此需要保存所使用的標准化方法的參數,以便對後續的數據進行統一的標准化。
除了上面提到的數據標准化外還有對數Logistic模式、模糊量化模式等等:
對數Logistic模式:新數據=1/(1+e^(-原數據))
模糊量化模式:新數據=1/2+1/2sin[派3.1415/(極大值-極小值)*(X-(極大值-極小值)/2) ] X為原數據
❺ 數據虛擬化的什麼是數據虛擬化
為了實現大數據所勾畫出的美好願景,你需要在數據層和基礎設施層等基礎架構中對數據進行抽象化的工作。
迄今為止,還沒有人能夠對這些將雲與大數據世界拼接在一起的層、界面和抽象化展開進一步概述,而這也是一項擺在我們面前的艱巨任務。
❻ 什麼是結構化數據,非結構化數據和半結構化數據
結構化數據也稱為行數據,是由二維表結構來邏輯表達和實現的數據,嚴格地遵循數據格式與長度規范,主要通過關系型資料庫進行存儲和管理。結構化數據標記是能讓網站以更好的姿態展示在搜索結果當中的方式。做了結構化數據標記,便能使網站在搜索結果中良好地展示豐富網頁摘要。
非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。非結構化數據其格式非常多樣,標准也是多樣性的,而且在技術上非結構化信息比結構化信息更難標准化和理解。
半結構化數據具有一定的結構性,是一種適於資料庫集成的數據模型。也就是說,適於描述包含在兩個或多個資料庫(這些資料庫含有不同模式的相似數據)中的數據。它也是一種標記服務的基礎模型,用於Web上共享信息。
(6)數據多什麼化擴展閱讀:
結構化數據的標記方式
1、使用HTML代碼標記
HTML代碼標記的方式主要有3種:微數據、微格式和RDFa。但對於一些外貿站站來說,標記是以微數據為主,少許時候也會用到微格式,視不用的頁面類型而定。
2、使用微數據標記
使用微數據標記的話,主流是使用schema進行標記。但由於頁面上有些項, schema並沒推出相應的標記代碼,從而也得仍舊使用data-vocabulary來標記, 這樣的話頁面代碼上就會出現新舊代碼並存的情況。
❼ 結構化數據和非結構化數據是什麼意思
結構化數據和非結構化數據是大數據的兩種類型,這兩者之間並不存在真正的沖突。客戶如何選擇不是基於數據結構,而是基於使用它們的應用程序:關系資料庫用於結構化數據,大多數其他類型的應用程序用於非結構化數據。
結構化數據也稱作行數據,是由二維表結構來邏輯表達和實現的數據,嚴格地遵循數據格式與長度規范,主要通過關系型資料庫進行存儲和管理。
與結構化數據相對的是不適於由資料庫二維表來表現的非結構化數據,包括所有格式的辦公文檔、XML、HTML、各類報表、圖片和音頻、視頻信息等。
(7)數據多什麼化擴展閱讀
結構化和非結構化數據之間的差異除了存儲在關系資料庫和存儲非關系資料庫之外的明顯區別之外,最大的區別在於分析結構化數據與非結構化數據的便利性。針對結構化數據存在成熟的分析工具,但用於挖掘非結構化數據的分析工具正處於萌芽和發展階段。
並且非結構化數據要比結構化數據多得多。非結構化數據占企業數據的80%以上,並且以每年55%~65%的速度增長。如果沒有工具來分析這些海量數據,企業數據的巨大價值都將無法發揮。