Ⅰ 數據分析師需要學習什麼
大家都知道,現在有很多人想成為數據分析師,數據分析師需要學習很多的知識,這是毋庸置疑的,但是對數據分析師需要學習的課程不是很了解,一般來說,數據分析師需要學習很多的知識。對於數據分析師所要學習的課程來說需要分為技術學習、統計理論、表達能力三個層面進行學習,這些層面是數據分析的大體內容,在這篇文章中我們就從這三個層面進行分析,並且講解每個層面需要學習的技能。
數據分析的技術學習涉及到了很多的工作內容。首先,我們需要對資料庫或者其他渠道中獲得數據。很多人對於數據獲取方面還是要靠很多人,在現在對於數據的獲取只能靠自己了,對於數據的獲取是需要sql工具,而sql工具就是為了統計取數而生的工具,而sql工具一般是解決中型數據,Excel可以應對小型數據的分析。當然,還需要學習r語言、Python、spss等數據,這樣才能夠提供數據的挖掘能力。當然還需要學習資料庫的內容,將數據納入資料庫的本領也需要掌握,學好了這些才能夠做好數據分析。所以說,我們一定要重視起來對數據分析工具的使用。
而統計也是數據分析中最重要的工作,統計學是數據分析中至關重要的課程,不管是在業務方面發展還是在技術方面發展都需要重視數據分析工作,大家在學習統計方面知識的時候一定要學會裡面的數據分析思維框架,這樣才能夠對日後的數據分析工作有很好的幫助。
最後我們說一下表達能力,其實不管表達能力在哪個工作中都是一個重要的技能,如果你肚子里有很多東西,但是表達不出來,也是不算是一個優秀的數據分析師,所以說,一個數據分析師一定要做到胸有成竹,這樣就能夠讓別人輕松的理解你的想法。擁有一個好的表達能力至關重要,在分析數據以後需要給客戶闡述數據分析的結果,不但有很強的語言表達能力,還要會製作ppt,在講述和製作ppt的時候需要有嚴密的邏輯,這樣才有說服力,在做ppt的時候還需要對語言進行組織,力爭做到圖文並茂,這樣才能夠讓人信服你的數據分析結果。
關於數據分析師需要學習的內容我們就給大家介紹到這里了,如果大家想走進數據分析這一行業的時候一定提前了解好這些內容,這樣有利於自己設計學習計劃,從而高效的學習知識。當然,大家要想了解更多有關數據分析的相關情況,請持續關注我們吧。
Ⅱ 數據分析需要掌握些什麼知識
統計學,數學,邏輯學是數據分析的基礎,是數據分析師的內功,內功不扎實,學再多都是徒勞。
掌握統計學,我們才能知道每一種數據分析的模型,什麼樣的輸入,什麼樣的輸出,有什麼樣的作用,開始我們並不一定要把每個演算法都弄懂。
如果我們要做數據挖掘師,數據能力是我們吃飯的飯碗。
如果你沒有數學能力,用現成的模型也好,模塊也好,也能做,但一定會影響你的技術提升,當然更影響你的職位晉升。
業務方向
大家在招聘網站中搜索數據分析的職位,大概分為兩類:輔助業務的數據分析職位和數據分析師職位。
1)輔助業務的數據分析:一般在零售業里職位設置較多,該職位一定要對業務爛熟於心,對業務有長時間的積淀和理解,用數據發現業務流程中的問題,並提出合理化的解決方案,分析數據是為整個商業邏輯去做支撐。細分職位包括:市場調查、行業分析和經營分析三類。
2)數據分析師:業務方向的數據分析師,該職位招聘時一定前面有一個限定詞,什麼數據分析師,歸結起來分為三類:產品數據分析師,運營數據分析師和銷售數據分析師。
技術方向
技術方向主要指數據挖掘方向,分為三類:數據挖掘工程師(機器學習)、數據倉庫工程師(構架師)和數據開發工程師。在互聯網和金融行業崗位設置較多
普遍來說:技術方向的基礎崗的工資薪酬要比業務崗的薪酬高一個等級,但是做到管理崗的話,在中國,業務崗的薪酬比技術崗的薪酬要高。
Ⅲ 數據分析學什麼課程
首先你需要看下這張圖,這是一張數據分析師能力體系圖:
可以從圖上看到,Python在數據分析中的泛用性相當之高,流程中的各個階段都可以使用Python。所以作為數據分析師的你如果需要學習一門編程語言,那麼強力推薦Python~
Ⅳ 數據分析師需要學什麼
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。
分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。
編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
Ⅳ 數據分析師要學什麼內容
數據分析師需要學習統計學、編程能力、資料庫、數據分析方法、數據分析工具等內容,還要熟練使用 Excel,至少熟悉並精通一種數據挖掘工具和語言,具備撰寫報告的能力,還要具備扎實的 SQL 基礎。統計學
對於互聯網的數據分析來說,並不需要掌握太復雜的統計理論。所以只要按照本科教材,學一下統計學就夠了。
編程能力
學會一門編程語言,會讓你處理數據的效率大大提升。如果你只會在 Excel 上復制粘貼,動手能力是不可能快的。我比較推薦 Python,上手比較快,寫起來比較優雅。
資料庫
數據分析師經常和資料庫打交道,不掌握資料庫的使用可不行。學會如何建表和使用 SQL 語言進行數據處理,可以說是必不可少的技能。
數據倉庫
許多人分不清楚資料庫和數據倉庫的差異,簡單來說,數據倉庫記錄了所有歷史數據,專門設計為方便數據分析人員高效使用的。
數據分析方法
對於互聯網數據分析人員來說,可以看一下《精益創業》和《精益數據分析》,掌握常用的數據分析方法,然後再根據自己公司的產品調整,靈活組合。
數據分析工具
SAS、Matlab、SPSS 這些工具經常有人推薦,我要說的是在互聯網公司一般都用不上。做可視化的 Tableau,統計分析的友盟、網路統計,還有像我們神策分析等。
Ⅵ 數據分析師入門需要學什麼
1、懂業務
從事數據分析工作的前提就會需要懂業務,即熟悉行業知識、公司業務及流程,最好有自己獨到的見解,若脫離行業認知和公司業務背景,分析的結果只會是脫了線的風箏,沒有太大的使用價值。
2、懂管理
一方面是搭建數據分析框架的要求,比如確定分析思路就需要用到營銷、管理等理論知識來指導,如果不熟悉管理理論,就很難搭建數據分析的框架,後續的數據分析也很難進行。另一方面的作用是針對數據分析結論提出有指導意義的分析建議。
3、懂分析
指掌握數據分析基本原理與一些有效的數據分析方法,並能靈活運用到實踐工作中,以便有效的開展數據分析。基本的分析方法有:對比分析法、分組分析法、交叉分析法、結構分析法、漏斗圖分析法、綜合評價分析法、因素分析法、矩陣關聯分析法等。高級的分析方法有:相關分析法、回歸分析法、聚類分析法、判別分析法、主成分分析法、因子分析法、對應分析法、時間序列等。
4、懂工具
指掌握數據分析相關的常用工具。數據分析方法是理論,而數據分析工具就是實現數據分析方法理論的工具,面對越來越龐大的數據,我們不能依靠計算器進行分析,必須依靠強大的數據分析工具幫我們完成數據分析工作。
5、懂設計
懂設計是指運用圖表有效表達數據分析師的分析觀點,使分析結果一目瞭然。圖表的設計是門大學問,如圖形的選擇、版式的設計、顏色的搭配等等,都需要掌握一定的設計原則。
Ⅶ 學習數據分析需要掌握哪些知識
具有數理統計,經濟學,資料庫原理以及相關知識;能熟練使用excel、spss、quanvert、sas等統計軟體。
工作能力: 嚴謹的邏輯思維能力、學習能力、言語表達能力、管理能力
工作態度:積極主動、工作認真、工作嚴謹
具體要求:
1、根據數據分析方案進行數據分析,在既定時間內提交給市場研究人員;
2、能進行較高級的數據統計分析;
3、公司錄入人員的管理和業績考核;以及對編碼人員的行業知識和問卷結構的培訓;
4、錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對;
其他方面的要求:
1. 持證上崗。
2. 熱愛本職工作,具有高度的責任心和忘我的工作精神,愛崗敬業,工作認真細致,能認真完成公司交給的各項工作任務。
3. 要求掌握較深的業務知識和計算機應用知識,能用行業各種應用軟體進行各種數據分析和綜合數據處理,加工成有用的信息提供領導進行決策;能配合系統管理員進行計算機網路維護及管理。
4. 負責本公司計算機信息網絡數據的收集、傳遞(主要是上報)和管理工作,對各網點上報的數據和本機房傳遞的信息數據,要做好詳細的「數據傳遞紀錄」,對未按時間要求漏報和數據有誤的網點要及時督促,每月將各經營站、點數據上報情況通報一次;負責各類數據的整理、匯總和分析處理工作,及時向本公司領導及有關部門上報信息數據,做好相關紀錄;負責本公司網路信息數據的安全管理,及時做好各類數據及報表的備份工作,做好歸檔、保管工作,做好信息數據的保密工作,嚴禁向未授權單位、部門及個人提供各類信息數據;負責機房文件收發、歸檔和保管工作。
5. 遵守特定的工作時間:必須等各網點數據傳輸完畢核對無誤後才能下班。
關於數據分析員:
數據分析員是根據數據分析方案進行數據分析的人員,能進行較高級的數據統計分析,負責公司錄入人員的管理和業績考核,以及對編碼人員的行業知識和問卷結構的培訓,和錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對等職責。
Ⅷ 數據分析師要學什麼
數據分析師需要具備的能力:
1、需要有應用數學、統計學、數量經濟學專業本科或者工學碩士層次水平的數學知識背景。
2、至少熟練SPSS、STATISTIC、Eviews、SAS等數據分析軟體中的一門。
3、至少能夠用Acess等進行資料庫開發;
4、至少掌握一門數學軟體:matalab,mathmatics進行新模型的構建。
5、至少掌握一門編程語言;
6,當然還要其他應用領域方面的知識,比如市場營銷、經濟統計學等,因為這是數據分析的主要應用領域。
想了解更多關於數據分析師的信息,推薦到CDA數據分析認證中心看看,CDA 具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據人才。
Ⅸ 數據分析師需要學習什麼課程
數據分析師需要學習很多的知識,這是毋庸置疑的,但是對數據分析師需要學習的課程不是很了解,一般來說,數據分析師需要學習很多的知識。對於數據分析師所要學習的課程來說需要分為技術學習、統計理論、表達能力三個層面進行學習,這些層面是數據分析的大體內容,只有對這技能進行持續的學習,理解的越透徹,那麼對於數據的分析潛力就越大。下面就給大家詳細解釋一下各個層面需要學習的內容。
首先給大家說明一下數據分析的技術學習,而技術學習有幾個層面的內容要學習。首先,我們需要對資料庫或者其他渠道中獲得數據。很多人對於數據獲取方面還是要靠很多人,在現在對於數據的獲取只能靠自己了,對於數據的獲取是需要sql工具,而sql工具就是為了統計取數而生的工具,而sql工具一般是解決中型數據,Excel可以應對小型數據的分析。當然,還需要學習r語言、Python、spss等數據,這樣才能夠提供數據的挖掘能力。當然還需要學習資料庫的內容,將數據納入資料庫的本領也需要掌握,學好了這些才能夠做好數據分析。
然後給大家說一下關於統計的內容,統計學是數據分析中至關重要的課程,不管是在業務方面發展還是在技術方面發展都需要重視數據分析工作,大家在學習統計方面知識的時候一定要學會裡面的數據分析思維框架,這樣才能夠對日後的數據分析工作有很好的幫助。
最後說一下表達能力,而表達能力也是一項重要的能力,如果你肚子里有很多東西,但是表達不出來,也是不算是一個優秀的數據分析師,擁有一個好的表達能力至關重要,在分析數據以後需要給客戶闡述數據分析的結果,不但有很強的語言表達能力,還要會製作ppt,在講述和製作ppt的時候需要有嚴密的邏輯,這樣才有說服力,在做ppt的時候還需要對語言進行組織,力爭做到圖文並茂,這樣才能夠讓人信服你的數據分析結果。
以上的內容就是小編為大家解答的數據分析師需要學習的內容了,如果大家想走進數據分析這一行業的時候一定提前了解好這些內容,這樣有利於自己設計學習計劃,從而高效的學習知識。最後感謝大家的閱讀。