① 大數據時代:如何守護我們的數據安全
大數據時代:如何守護我們的數據安全
不管你承認不承認,我們已經全面進入了大數據時代。無時無刻,我們的很多信息都被通過各種途徑傳播出去,這就必然導致安全問題的產生。
大數據的安全問題有多嚴重?在此前舉辦的「2016中國大數據產業峰會」上發生的一個實例,就可見一斑。
在360展區,市民嚴女士隨手將錢包、手機放到安檢筐里,空手走過安檢門。她通過安檢門,突然發現大屏幕上顯示出自己銀行卡的姓名拼音、身份證號、銀行卡號、卡片有效期、最近10次的消費時間、消費地點、取現記錄、轉賬記錄等等。嚴女士驚呼:「遇到了魔術師」。
360安全專家劉洋解釋,實際上,存放手機錢包的安檢筐里存有一張具有NFC(近距離通信)功能的無線讀卡器,旁邊還有配套的信號接收器和電腦等設備,就像公交車刷卡器,只要銀行卡靠近讀卡器,卡片的信息就顯示出來,安檢門其實就是「安全魔術師」手中的障眼法。就在嚴女士將錢包放進安檢筐的那一刻,嚴女士的個人信息就已經泄露了。
那麼,我們靠什麼來保障我們的數據安全呢?難道我們只能看著個人的數據和隱私到處泄露嗎?
數據安全事件日益高發
近來,大數據安全事件呈高發之勢。日前,廣東警方破獲一起高科技經濟犯罪案件,17歲的「黑客」葉世廣,攻破了多個商業銀行網站,竊取了儲戶的身份證號、銀行卡號、支付密碼等數據,帶領一批人在網上大肆盜刷別人的信用卡,涉案金額近15億元,涉及銀行49家。
今年2月,發生了世界上有史以來規模最大的網路盜竊案。黑客入侵了孟加拉國央行在紐約聯邦儲備銀行的賬戶,盜走了8100萬美元,後來孟加拉國官方表示,黑客出現了一個拼寫錯誤,否則隨後還將進行一筆近10億美元的轉賬。
今年3月,與敘利亞有關聯的激進黑客組織對一個自來水廠發起網路攻擊。黑客操縱系統改變了進入到自來水中的化學物含量,阻礙凈水過程。
類似的案例不勝枚舉。
360公司總裁齊向東向《中國科學報》記者表示,接入互聯網的設備越多,網路攻擊的發生幾率就越高,網路攻擊首先瞄準大數據,攻擊造成大數據丟失、情報泄密和破壞網路安全運行。大數據技術是一把雙刃劍,既可以造福社會、造福人民,又可以被一些人用來損害社會公共利益和民眾利益。
大數據安全體系構建勢在必行
「在互聯網乃至物聯網時代,如果我們不能很好地解決安全問題,就會影響社會各方面的發展。因此,各級政府在鼓勵發展大數據的同時,要同步考慮構建大數據安全體系。」齊向東表示。
值得注意的是,傳統的網路安全思路已經無法保障大數據時代的安全。劉洋向記者介紹,傳統網路安全的防護思路是劃分邊界,將內網、外網分開,業務網和公眾網分離,用終端設備將潛在風險隔離。通過在每個邊界設立網關設備和網路流量設備,來守住「邊界」,以期解決安全問題。但隨著移動互聯網、雲服務的出現,移動終端在4G信號、Wi-Fi信號、電纜之間穿梭,網路邊界實際上已經消亡。
「很多傳統的大企業認為,只要自己購買伺服器並搭建獨立的機房,安排專門的技術人員就能夠保護企業的數據不被泄露,能夠保護企業的信息安全。但實際上,在如今的互聯網時代,這種傳統的方法更加容易被不法分子所攻破。」阿里雲安全資深總監肖力向《中國科學報》記者介紹,這是因為從技術實力來看,絕大部分企業並不是專門做網路安全、數據安全,其設置的技術壁壘難以阻擋專業的黑客。
齊向東介紹,360安全中心每天發現木馬樣本近千萬個,每天發現的各種軟硬體漏洞、網站漏洞超過120個,「每一個木馬每一個漏洞,都可能攻破預先部署的安全設備和安全軟體」。這種情況下,企業的傳統防護的確難以奏效。
雲平台和大數據需「雙劍合璧」
在采訪中,有專家認為,對付大數據時代的數據安全問題,防止信息泄露,除了完善相關法製法規,更加需要雲平台的防護技術,結合大數據技術來應對數據安全。
「在雲計算不斷深入發展的當下,將數據存儲在雲平台上,或許比傳統的企業信息防護更加安全。」肖力介紹,以阿里雲為例,阿里雲在架構設計之初就同步考慮了安全架構,不僅將安全的基因植入到整個雲平台和各個雲產品中,也將數據安全要求嵌入產品開發生命周期的各個環節。依靠專業的雲計算平台,強大的技術團隊能夠更好地應付來自黑客的攻擊。
不同用戶之間,無論是CPU、內存,還是存儲和網路,都默認相互隔離,既看不到對方的數據,也不會相互影響。「就像一間五星級酒店被分割成多個房間,他們之間是相互獨立和封閉的,從而確保不同租戶互不幹擾和數據隔離。」肖力表示。
據介紹,目前全國35%的網站的數據安全防護都依託於阿里雲平台的防護。阿里雲的雲盾,涵蓋網路安全、伺服器安全、數據安全、業務安全和移動安全這五個安全領域,來保護數據安全。
360也有自己的雲安全管理平台。劉洋介紹,該平台將360獨有的雲安全漏洞挖掘能力輸出給廣大用戶,通過統一管理、安全可見以及網路、主機、應用、數據的分層縱深防禦,為用戶全面解決雲安全問題。
「用大數據技術來解決大數據時代的安全問題十分必要。」齊向東進一步指出,必須建立「數據驅動安全」的思維,搭建全新的互聯網安全體系—「傳統安全+互聯網+大數據」。也就是說,要利用漏洞挖掘技術、網路攻擊技術、軟體樣行為分析技術以及由網路地址解析資料庫、網路訪問日誌資料庫、文件黑白名單資料庫等組成大數據系統與分析技術,構建全天候全方位感知網路安全態勢。「要基於強大的大資料庫、利用先進的大數據技術和廣泛的用戶覆蓋率,提前感知網路威脅態勢,為大眾提供未知威脅的發現與回溯功能並進行有效防護。」齊向東說。
「未來還應當聯合各方力量,共建互聯網安全產業鏈生態,來應對大數據時代的安全風險。」肖力表示。
② 大數據如何創新應用在社會治理、民生服務、產業升級等領域
大數據促進我國經濟社會創新發展
本文作者:工信部賽迪研究院互聯網研究所 陸峰博士
近日,國務院印發《「十三五」國家信息化規劃》,明確提出要建立統一開放的大數據體系,加強數據資源規劃建設,構建統一高效、互聯互通、安全可靠的國家數據資源體系,推動數據應用,強化數據資源管理,注重數據安全保護。
數據與煤炭、石油等能源資源一樣,是國家基礎性和戰略性資源。近兩年來,我國大數據產業生態體系不斷完善,管理服務應用創新層出不窮,新服務、新模式、新業態不斷涌現,為推進產業轉型升級、創新社會治理模式、優化民生保障服務提供了重要保障,成為中國經濟社會創新發展的重要驅動力。加快推進大數據在經濟社會各領域創新應用,促進產業創新、管理創新、服務創新和治理創新,已經成為落實創新、協調、綠色、開放、共享五大發展理念重要抓手,成為推動中國經濟社會創新發展重要途徑。
一、大數據促進了產業發展模式創新,推動了產業轉型升級和提質增效
一是大數據促進傳統產業組織和運行模式創新,讓傳統產業研發設計、生產製造、物流運輸、售後服務更加精準、高效和智能。基於客戶需求反饋大數據的研發設計模式,有效解決了研發設計閉門造車問題,讓企業研發設計更加具有針對性和導向性。物流大數據有效解決了物流運輸信息不對稱問題,讓物流資源調度更加優化和智能,物流倉儲、車輛、人員等物流資源利用更加匹配和高效。生產製造大數據解決了生產數據車間流動問題,讓企業生產流線更加柔性化,有效支撐了個性化定製、體驗式製造、網路製造等新型製造業態。遠程運維、在線監測等大數據有效解決了大型機械裝備售後管理和維修問題,加強了產品的全生命周期管理,實現了對產品故障提前智能預警,促進了維修資源的優化配置,顯著縮短了維修周期。
二是大數據促進了新型信息服務業態的孵化,各領域大數據分析挖掘行業信息服務快速崛起。營銷、徵信、互聯網金融等領域大數據信息服務的崛起,讓產業經濟發展更加高效、健康。營銷大數據信息服務的發展,指導了企業商業規劃,優化商業資源配置,提高商業營銷效率,實現了精準營銷。徵信大數據信息服務的發展,有效解決了交易雙方信用信息不對稱問題,提高了交易可靠性保障,讓商業活動發展更加守信和健康。互聯網金融大數據信息服務的發展,縮減了互聯網金融運營成本,降低了普惠金融的發展門檻,有效解決了中小企業短期資金缺口問題,對傳統金融服務起到了有效補充。
三是大數據倒逼著信息通信技術加速創新,為我國信息通信產業實現後發趕超、由大變強提供了難得歷史機遇。大數據技術倒逼著傳統單機數據存儲和計算分析模式向網路分布式存儲和協同計算模式方向發展,對主機存儲、網路傳輸、計算控制提出了新的要求,倒逼了存儲、傳輸、計算等技術升級換代,為我國企業利用互聯網產業發展契機,推進存儲、傳輸、計算等技術自主可控提供了歷史機遇。
二、大數據促進了社會治理模式創新,加速了國家治理能力和治理體系現代化
一是大數據提升了政府社會管理能力,基於大數據的社會管理模式讓社會管理更加主動、精準、高效。城市管網、園林綠化、市容市貌等市政管理大數據的採集、挖掘和利用,加強了對城市基礎運行部件的實時監控和智能管理,優化了市政管理資源的配置,促進了城市綠色、清潔、高效、安全運行。公路、鐵路、地鐵、水運、航空等交通大數據的採集、挖掘和利用,有效指導了道路交通規劃,促進了交通運輸資源配置優化,實現了對交通的實時疏導能力,提高了對交通事故的預判能力,更好地滿足公眾安全、高效出行需要。水災、火災、台風等應急救災大數據的採集、挖掘和利用,提高了對災難發生的預判能力,優化了救災資源配置和調度,強化了災難發展動向科學評估,促進了災難損失的降低。城市規劃大數據的採集、挖掘和利用,讓城市居住和產業規劃布局更加科學合理,實現了人口早晚合理潮汐流動,降低了城市交通擁堵,促進了城市宜商宜居和產城融合。
二是大數據提升了政府宏觀調控能力,讓宏觀調控更加精準和科學。電子支付、移動支付、互聯網金融等金融大數據的採集、挖掘和利用,實現了國家對金融運行精準掌控,提高了國家對金融運行的綜合分析能力和金融調控的決策能力。電子商務大數據的採集、挖掘和利用,實現了國家對社會商貿活動運行狀態的有效把控,促進了供需調控的精準化,為了推進供給側改革、促進產業結構調整、優化產業布局提供了科學依據。煤炭、電力、石油等能源大數據的採集、挖掘和利用,實現了國家對全社會經濟運行活躍性的有效評估,為推進節能減排、加強環境治理、優化產業政策提供了科學依據。
三是大數據提升了政府市場監管能力,強化線上線下一體化監管,實現事中監管和事前預防有機結合。煤礦、非煤礦山、煙花爆竹、石化冶煉、危化品等企業安全生產大數據的採集、挖掘和利用,提高了重點危險源企業安全生產在線監管水平,實現了對重點危險源風險的科學預判,有效防範了潛在事故和重特大事故發生,降低了安全生產事故發生概率。食品、葯品等大數據的採集、挖掘和利用,強化了產品全生命周期監管,提高了產品的溯源能力,保障了涉及民生產品安全。銀行、證券、外管等金融大數據的採集、挖掘、利用,強化了對洗錢、詐騙、非法集資、內幕操作等非法金融活動監管,有效防範了金融系統性風險的發生,保障了金融運行的穩定。金融、納稅、環保、行政處罰、刑事處罰等領域信用大數據的採集、挖掘和利用,促進了信用信息「全國一張網」建設,市場主體誠信檔案、行業黑名單制度和市場退出機制逐步健全,強化了聯合激勵與懲戒機制,實現了讓「守信者一路綠燈,失信者處處受限」。同時,大數據應用完善了政府市場監管機制,實現了讓權力運行處處留痕,把執法權力關進了「數據鐵籠」。
四是大數據提升了政府網路空間治理能力,網路社會治理更加高效、科學。網路輿情大數據的採集、挖掘和利用,提高了對網路社會關注焦點的即時發現能力,加強了對物理社會潛在燃點的研判,倒逼社會重要問題解決,為解決社會問題提供了有效的決策數據支撐和贏得寶貴時間窗口期。網路安全大數據的採集、挖掘和利用,強化了對網路安全態勢的全面感知,提高了網路黑客攻擊發現能力,完善了網路安全保障體系,提升了對網路空間的管控能力。
三、大數據促進了民生服務模式創新,提升了民生保障便民、利民和惠民水平
一是大數據促進了民生服務資源優化配置,以人為本發展理念得到更加充分落實。大眾出行大數據的採集、挖掘和利用,促進了公共交通運輸資源配置,提升對道路交通的實時誘導,實現讓大眾出行道路更加順暢和換乘更加銜接。電、水、熱、氣、通信等服務大數據的採集、挖掘和利用,促進了服務資源的優化調度配置,讓服務更加均衡協調。流動人口、老年人口、學前兒童、居住人口等大數據的採集、挖掘和利用,完善了流動人口計劃生育、子女入學、醫療保障等服務,促進了醫養、學前教育、生活服務等資源優化配置。
二是大數據提高了大眾醫療衛生保障水平,構建起了人類生命新守護環。電子病歷、居民健康檔案、可穿戴智能健康設備數據等醫療衛生大數據的採集、挖掘和利用,提高醫療機構臨床決策智能化水平和遠程病人監控精準化水平,提升了衛生部門公共衛生和公眾健康監控的效率,縮短科研機構醫療葯品研發周期,為全社會防控大規模疫情發生、優化醫療資源配置、提高人的健康保障提供了有效的決策依據。
大數據正在深刻影響和改變世界發展,對產業發展、社會治理、民生服務帶來影響才剛剛開始,應用前景非常寬廣。牢牢把握科技革命歷史機遇,率先搶佔大數據發展先機,大力發展數據產業,推進大數據在經濟社會各領域深入應用,完善大數據採集挖掘、存儲傳輸、流通交易、安全保障等相關制度,充分釋放數據資源紅利,必將為中國經濟社會創新發展注入新的發展動力,推動中國經濟社會發展邁上新的發展台階、開啟發展新方位。
(聯系郵箱:[email protected])
③ 大數據怎麼發揮大價值
1 大數據興起預示逗信息時代地進入新階段
1.1 看待大數據要有歷史性的眼光
信息時代是相對於農業和工業時代而言的一段相當長的時間。不同時代的生產要素和社會發展驅動力有明顯差別。信息時代的標志性技術發明是數字計算機、集成電路、光纖通信和互聯網(萬維網)。盡管媒體上大量出現逗大數據時代地的說法,但大數據、雲計算等新技術目前還沒有出現與上述劃時代的技術發明可媲美的技術突破,難以構成一個超越信息時代的新時代。信息時代可以分成若干階段,大數據等新技術的應用標志著信息社會將進入一個新階段。
考察分析100年以上的歷史長河可以發現,信息時代與工業時代的發展規律有許多相似之處。電氣化時代與信息時代生產率的提高過程驚人地相似。都是經過20~30年擴散儲備之後才有明顯提高,分界線分別是1915年和1995年。筆者猜想,信息技術經過幾十年的擴散儲備後,21世紀的前30年可能是信息技術提高生產率的黃金時期。
1.2 從逗信息時代新階段地的高度認識逗大數據地
中國已開始進入信息時代,但許多人的思想還停留在工業時代。經濟和科技工作中出現的許多問題,其根源是對時代的認識不到位。18-19世紀中國落後挨打,根源是滿清政府沒有認識到時代變了,我們不能重犯歷史性的錯誤。
中央提出中國進入經濟逗新常態地以後,媒體上有很多討論,但多數是為經濟增速降低做解釋,很少有從時代改變的角度論述逗新常態地的文章。筆者認為,經濟新常態意味著中國進入了以信息化帶動新型工業化、城鎮化和農業現代化的新階段,是經濟和社會管理的躍遷,不是權宜之計,更不是倒退。
大數據、移動互聯網、社交網路、雲計算、物聯網等新一代信息技術構成的IT架構逗第三平台地是信息社會進入新階段的標志,對整個經濟的轉型有引領和帶動作用。媒體上經常出現的互聯網、創客、逗第二次機器革命地、逗工業4.0地等都與大數據和雲計算有關。大數據和雲計算是新常態下提高生產率的新杠桿,所謂創新驅動發展就是主要依靠信息技術促進生產率的提高。
1.3 大數據可能是中國信息產業從跟蹤走向引領的突破口
中國的大數據企業已經有相當好的基礎。全球十大互聯網服務企業中國佔有4席(阿里巴巴、騰訊、網路和京東),其他6個Top10 互聯網服務企業全部是美國企業,歐洲和日本沒有互聯網企業進入Top10。這說明中國企業在基於大數據的互聯網服務業務上已處於世界前列。在發展大數據技術上,我國有可能改變過去30年技術受制於人的局面,在大數據應用上中國有可能在全世界起到引領作用。
但是,企業的規模走在世界前列並不表示我國在大數據技術上領先。實際上,國際上目前流行的大數據主流技術沒有一項是我國開創的。開源社區和眾包是發展大數據技術和產業的重要途徑,但我們對開源社區的貢獻很小,在全球近萬名社區核心志願者中,我國可能不到200名。我們要吸取過去基礎研究為企業提供核心技術不夠的教訓,加強大數據基礎研究和前瞻技術研究,努力攻克大數據核心和關鍵技術。
2 理解大數據需要上升到文化和認識論的高度
2.1 數據文化是一種先進文化
數據文化的本質是尊重客觀世界的實事求是精神,數據就是事實。重視數據就是強調用事實說話、按理性思維的科學精神。中國人的傳統習慣是定性思維而不是定量思維。目前許多城市在開展政府數據開放共享工作,但是發現多數老百姓對政府要開放的數據並不感興趣。要讓大數據走上健康的發展軌道,首先要大力弘揚數據文化。本文講的數據文化不只是大數據用於文藝、出版等文化產業,而是指全民的數據意識。全社會應認識到:信息化的核心是數據,只有政府和大眾都關注數據時,才能真正理解信息化的實質;數據是一種新的生產要素,大數據的利用可以改變資本和土地等傳統要素在經濟中的權重。
有人將逗上帝與數據共舞地歸納為美國文化的特點之一,說的是美國人既有對神的誠意,又有通過數據求真的理性。美國從鍍金時代到進步主義時期完成了數據文化的思維轉變,南北戰爭之後人口普查的方法被應用到很多領域,形成了數據預測分析的思維方式。近百年來美國和西方各國的現代化與數據文化的傳播滲透有密切關系,我國要實現現代化也必須強調數據文化。
提高數據意識的關鍵是要理解大數據的戰略意義。數據是與物質、能源一樣重要的戰略資源,數據的採集和分析涉及每一個行業,是帶有全局性和戰略性的技術。從硬技術到軟技術的轉變是當今全球性的技術發展趨勢,而從數據中發現價值的技術正是最有活力的軟技術,數據技術與數據產業的落後將使我們像錯過工業革命機會一樣延誤一個時代。
2.2 理解大數據需要有正確的認識論
歷史上科學研究是從邏輯演繹開始的,歐幾里得幾何的所有定理可從幾條公理推導出來。從伽利略和牛頓開始,科學研究更加重視自然觀察和實驗觀察,在觀察基礎上通過歸納方法提煉出科學理論,逗科學始於觀察地成為科學研究和認識論的主流。經驗論和唯理論這兩大流派都對科學的發展做出過重大貢獻,但也暴露出明顯的問題,甚至走入極端。理性主義走向極端就成為康德所批判的獨斷主義,經驗主義走入極端就變成懷疑論和不可知論。
20世紀30年代,德國哲學家波普爾提出了被後人稱為逗證偽主義地的認識論觀點,他認為科學理論不能用歸納法證實,只能被試驗發現的反例逗證偽地,因而他否定科學始於觀察,提出逗科學始於問題地的著名觀點[3]。證偽主義有其局限性,如果嚴格遵守證偽法則,萬有引力定律、原子論等重要理論都可能被早期的所謂反例扼殺。但逗科學始於問題地的觀點對當前大數據技術的發展有指導意義。
大數據的興起引發了新的科學研究模式:逗科學始於數據地。從認識論的角度看,大數據分析方法與逗科學始於觀察地的經驗論較為接近,但我們要牢記歷史的教訓,避免滑入否定理論作用的經驗主義泥坑。在強調逗相關性地的時候不要懷疑逗因果性地的存在;在宣稱大數據的客觀性、中立性的時候,不要忘了不管數據的規模如何,大數據總會受制於自身的局限性和人的偏見。不要相信這樣的預言:逗採用大數據挖掘,你不需要對數據提出任何問題,數據就會自動產生知識地。面對像大海一樣的巨量數據,從事數據挖掘的科技人員最大的困惑是,我們想撈的逗針地是什麼看這海里究竟有沒有逗針地看也就是說,我們需要知道要解決的問題是什麼。從這個意義上講,逗科學始於數據地與逗科學始於問題地應有機地結合起來。
對逗原因地的追求是科學發展的永恆動力。但是,原因是追求不完的,人類在有限的時間內不可能找到逗終極真理地。在科學的探索途中,人們往往用逗這是客觀規律地解釋世界,並不立即追問為什麼有這樣的客觀規律。也就是說,傳統科學並非只追尋因果性,也可以用客觀規律作為結論。大數據研究的結果多半是一些新的知識或新的模型,這些知識和模型也可以用來預測未來,可以認為是一類局部性的客觀規律。科學史上通過小數據模型發現一般性規律的例子不少,比如開普勒歸納的天體運動規律等;而大數據模型多半是發現一些特殊性的規律。物理學中的定律一般具有必然性,但大數據模型不一定具有必然性,也不一定具有可演繹性。大數據研究的對象往往是人的心理和社會,在知識階梯上位於較高層,其自然邊界是模糊的,但有更多的實踐特徵。大數據研究者更重視知行合一,相信實踐論。大數據認識論有許多與傳統認識論不同的特點,我們不能因其特點不同就否定大數據方法的科學性。大數據研究挑戰了傳統認識論對因果性的偏愛,用數據規律補充了單一的因果規律,實現了唯理論和經驗論的數據化統一,一種全新的大數據認識論正在形成。
3 正確認識大數據的價值和效益
3.1 大數據的價值主要體現為它的驅動效應
人們總是期望從大數據中挖掘出意想不到的逗大價值地。實際上大數據的價值主要體現在它的驅動效應,即帶動有關的科研和產業發展,提高各行各業通過數據分析解決困難問題和增值的能力。大數據對經濟的貢獻並不完全反映在大數據公司的直接收入上,應考慮對其他行業效率和質量提高的貢獻。大數據是典型的通用技術,理解通用技術要採用逗蜜蜂模型地:蜜蜂的效益主要不是自己釀的蜂蜜,而是蜜蜂傳粉對農業的貢獻。
電子計算機的創始人之一馮·諾依曼曾指出:逗在每一門科學中,當通過研究那些與終極目標相比頗為朴實的問題,發展出一些可以不斷加以推廣的方法時,這門學科就得到了巨大的進展。地我們不必天天期盼奇跡出現,多做一些逗頗為朴實地的事情,實際的進步就在扎扎實實的努力之中。媒體喜歡宣傳一些令人驚奇的大數據成功案例,對這些案例我們應保持清醒的頭腦。據Intel中國研究院首席工程師吳甘沙在一次報告中透露,所謂逗啤酒加尿布地的數據挖掘經典案例,其實是Teradata公司一位經理編出來的逗故事地,歷史上並沒有發生過[4]。即使有這個案例,也不說明大數據分析本身有什麼神奇,大數據中看起來毫不相關的兩件事同時或相繼出現的現象比比皆是,關鍵是人的分析推理找出為什麼兩件事物同時或相繼出現,找對了理由才是新知識或新發現的規律,相關性本身並沒有多大價值。
有一個家喻戶曉的寓言可以從一個角度說明大數據的價值:一位老農民臨終前告訴他的3個兒子,他在他家的地中埋藏了一罐金子,但沒有講埋在哪裡。
他的兒子們把他家所有的地都深挖了一遍,沒有挖到金子,但由於深挖了土地,從此莊稼收成特別好。數據收集、分析的能力提高了,即使沒有發現什麼普適的規律或令人完全想不到的新知識,大數據的價值也已逐步體現。
3.2 大數據的力量來自逗大成智慧地
每一種數據來源都有一定的局限性和片面性,只有融合、集成各方面的原始數據,才能反映事物的全貌。事物的本質和規律隱藏在各種原始數據的相互關聯之中。不同的數據可能描述同一實體,但角度不同。對同一個問題,不同的數據能提供互補信息,可對問題有更深入的理解。因此在大數據分析中,匯集盡量多種來源的數據是關鍵。
數據科學是數學(統計、代數、拓撲等)、計算機科學、基礎科學和各種應用科學融合的科學,類似錢學森先生提出的逗大成智慧學地[5]。錢老指出:逗必集大成,才能得智慧地。大數據能不能出智慧,關鍵在於對多種數據源的集成和融合。IEEE計算機學會最近發布了2014年的計算機技術發展趨勢預測報告,重點強調逗無縫智慧(seamless intelligence)地。發展大數據的目標就是要獲得協同融合的逗無縫智慧地。單靠一種數據源,即使數據規模很大,也可能出現逗瞎子摸象地一樣的片面性。數據的開放共享不是錦上添花的工作,而是決定大數據成敗的必要前提。
大數據研究和應用要改變過去各部門和各學科相互分割、獨立發展的傳統思路,重點不是支持單項技術和單個方法的發展,而是強調不同部門、不同學科的協作。數據科學不是垂直的逗煙囪地,而是像環境、能源科學一樣的橫向集成科學。
3.3 大數據遠景燦爛,但近期不能期望太高
交流電問世時主要用作照明,根本想像不到今天無處不在的應用。大數據技術也一樣,將來一定會產生許多現在想不到的應用。我們不必擔心大數據的未來,但近期要非常務實地工作。人們往往對近期的發展估計過高,而對長期的發展估計不足。Gartner公司預測,大數據技術要在5~10年後才會成為較普遍採用的主流技術,對發展大數據技術要有足夠的耐心。
大數據與其他信息技術一樣,在一段時間內遵循指數發展規律。指數發展的特點是,從一段歷史時期衡量(至少30年),前期發展比較慢,經過相當長時間(可能需要20年以上)的積累,會出現一個拐點,過了拐點以後,就會出現爆炸式的增長。但任何技術都不會永遠保持逗指數性地增長,一般而言,高技術發展遵循Gartner公司描述的技術成熟度曲線(hype cycle),最後可能進入良性發展的穩定狀態或者走向消亡。
需要採用大數據技術來解決的問題往往都是十分復雜的問題,比如社會計算、生命科學、腦科學等,這些問題絕不是幾代人的努力就可以解決的。宇宙經過百億年的演化,才出現生物和人類,其復雜和巧妙堪稱絕倫,不要指望在我們這一代人手中就能徹底揭開其奧妙。展望數百萬年甚至更長遠的未來,大數據技術只是科學技術發展長河中的一朵浪花,對10~20年大數據研究可能取得的科學成就不能抱有不切實際的幻想。
4 從復雜性的角度看大數據研究和應用面臨的挑戰
大數據技術和人類探索復雜性的努力有密切關系。20世紀70年代,新三論(耗散結構論、協同論、突變論)的興起對幾百年來貫穿科學技術研究的還原論發起了挑戰。1984年蓋爾曼等3位諾貝爾獎得主成立以研究復雜性為主的聖菲研究所,提出超越還原論的口號,在科技界掀起了一場復雜性科學運動。雖然雷聲很大,但30年來並未取得預期的效果,其原因之一可能是當時還沒有出現解決復雜性的技術。
集成電路、計算機與通信技術的發展大大增強了人類研究和處理復雜問題的能力。大數據技術將復雜性科學的新思想發揚光大,可能使復雜性科學得以落地。復雜性科學是大數據技術的科學基礎,大數據方法可以看作復雜性科學的技術實現。大數據方法為還原論與整體論的辯證統一提供了技術實現途徑。大數據研究要從復雜性研究中吸取營養,從事數據科學研究的學者不但要了解20世紀的逗新三論地,可能還要學習與超循環、混沌、分形和元胞自動機等理論有關的知識,擴大自己的視野,加深對大數據機理的理解。
大數據技術還不成熟,面對海量、異構、動態變化的數據,傳統的數據處理和分析技術難以應對,現有的數據處理系統實現大數據應用的效率較低,成本和能耗較大,而且難以擴展。這些挑戰大多來自數據本身的復雜性、計算的復雜性和信息系統的復雜性。
4.1 數據復雜性引起的挑戰
圖文檢索、主題發現、語義分析、情感分析等數據分析工作十分困難,其原因是大數據涉及復雜的類型、復雜的結構和復雜的模式,數據本身具有很高的復雜性。目前,人們對大數據背後的物理意義缺乏理解,對數據之間的關聯規律認識不足,對大數據的復雜性和計算復雜性的內在聯系也缺乏深刻理解,領域知識的缺乏制約了人們對大數據模型的發現和高效計算方法的設計。形式化或定量化地描述大數據復雜性的本質特徵及度量指標,需要深入研究數據復雜性的內在機理。人腦的復雜性主要體現在千萬億級的樹突和軸突的鏈接,大數據的復雜性主要也體現在數據之間的相互關聯。理解數據之間關聯的奧秘可能是揭示微觀到宏觀逗涌現地規律的突破口。大數據復雜性規律的研究有助於理解大數據復雜模式的本質特徵和生成機理,從而簡化大數據的表徵,獲取更好的知識抽象。為此,需要建立多模態關聯關系下的數據分布理論和模型,理清數據復雜度和計算復雜度之間的內在聯系,奠定大數據計算的理論基礎。
4.2 計算復雜性引起的挑戰
大數據計算不能像處理小樣本數據集那樣做全局數據的統計分析和迭代計算,在分析大數據時,需要重新審視和研究它的可計算性、計算復雜性和求解演算法。大數據樣本量巨大,內在關聯密切而復雜,價值密度分布極不均衡,這些特徵對建立大數據計算範式提出了挑戰。對於PB級的數據,即使只有線性復雜性的計算也難以實現,而且,由於數據分布的稀疏性,可能做了許多無效計算。
傳統的計算復雜度是指某個問題求解時需要的時間空間與問題規模的函數關系,所謂具有多項式復雜性的演算法是指當問題的規模增大時,計算時間和空間的增長速度在可容忍的范圍內。傳統科學計算關注的重點是,針對給定規模的問題,如何逗算得快地。而在大數據應用中,尤其是流式計算中,往往對數據處理和分析的時間、空間有明確限制,比如網路服務如果回應時間超過幾秒甚至幾毫秒,就會丟失許多用戶。大數據應用本質上是在給定的時間、空間限制下,如何逗算得多地。從逗算得快地到逗算得多地,考慮計算復雜性的思維邏輯有很大的轉變。所謂逗算得多地並不是計算的數據量越大越好,需要探索從足夠多的數據,到剛剛好的數據,再到有價值的數據的按需約簡方法。
基於大數據求解困難問題的一條思路是放棄通用解,針對特殊的限制條件求具體問題的解。人類的認知問題一般都是NP難問題,但只要數據充分多,在限制條件下可以找到十分滿意的解,近幾年自動駕駛汽車取得重大進展就是很好的案例。為了降低計算量,需要研究基於自舉和采樣的局部計算和近似方法,提出不依賴於全量數據的新型演算法理論,研究適應大數據的非確定性演算法等理論。
4.3 系統復雜性引起的挑戰
大數據對計算機系統的運行效率和能耗提出了苛刻要求,大數據處理系統的效能評價與優化問題具有挑戰性,不但要求理清大數據的計算復雜性與系統效率、能耗間的關系,還要綜合度量系統的吞吐率、並行處理能力、作業計算精度、作業單位能耗等多種效能因素。針對大數據的價值稀疏性和訪問弱局部性的特點,需要研究大數據的分布式存儲和處理架構。
大數據應用涉及幾乎所有的領域,大數據的優勢是能在長尾應用中發現稀疏而珍貴的價值,但一種優化的計算機系統結構很難適應各種不同的需求,碎片化的應用大大增加了信息系統的復雜性,像昆蟲種類一樣多(500多萬種)的大數據和物聯網應用如何形成手機一樣的巨大市場,這就是所謂逗昆蟲綱悖論地[6]。為了化解計算機系統的復雜性,需要研究異構計算系統和可塑計算技術。
大數據應用中,計算機系統的負載發生了本質性變化,計算機系統結構需要革命性的重構。信息系統需要從數據圍著處理器轉改變為處理能力圍著數據轉,關注的重點不是數據加工,而是數據的搬運;系統結構設計的出發點要從重視單任務的完成時間轉變到提高系統吞吐率和並行處理能力,並發執行的規模要提高到10億級以上。構建以數據為中心的計算系統的基本思路是從根本上消除不必要的數據流動,必要的數據搬運也應由逗大象搬木頭地轉變為逗螞蟻搬大米地。
5 發展大數據應避免的誤區
5.1 不要一味追求逗數據規模大地
大數據主要難點不是數據量大,而是數據類型多樣、要求及時回應和原始數據真假難辨。現有資料庫軟體解決不了非結構化數據,要重視數據融合、數據格式的標准化和數據的互操作。採集的數據往往質量不高是大數據的特點之一,但盡可能提高原始數據的質量仍然值得重視。腦科學研究的最大問題就是採集的數據可信度差,基於可信度很差的數據難以分析出有價值的結果。
一味追求數據規模大不僅會造成浪費,而且效果未必很好。多個來源的小數據的集成融合可能挖掘出單一來源大數據得不到的大價值。應多在數據的融合技術上下功夫,重視數據的開放與共享。所謂數據規模大與應用領域有密切關系,有些領域幾個PB的數據未必算大,有些領域可能幾十TB已經是很大的規模。
發展大數據不能無止境地追求逗更大、更多、更快地,要走低成本、低能耗、惠及大眾、公正法治的良性發展道路,要像現在治理環境污染一樣,及早關注大數據可能帶來的逗污染地和侵犯隱私等各種弊端。
5.2 不要逗技術驅動地,要逗應用為先地
新的信息技術層出不窮,信息領域不斷冒出新概念、新名詞,估計繼逗大數據地以後,逗認知計算地、逗可穿戴設備地、逗機器人地等新技術又會進入炒作高峰。我們習慣於跟隨國外的熱潮,往往不自覺地跟著技術潮流走,最容易走上逗技術驅動地的道路。實際上發展信息技術的目的是為人服務,檢驗一切技術的唯一標準是應用。我國發展大數據產業一定要堅持逗應用為先地的發展戰略,堅持應用牽引的技術路線。技術有限,應用無限。各地發展雲計算和大數據,一定要通過政策和各種措施調動應用部門和創新企業的積極性,通過跨界的組合創新開拓新的應用,從應用中找出路。
5.3 不能拋棄逗小數據地方法
流行的逗大數據地定義是:無法通過目前主流軟體工具在合理時間內採集、存儲、處理的數據集。這是用不能勝任的技術定義問題,可能導致認識的誤區。按照這種定義,人們可能只會重視目前解決不了的問題,如同走路的人想踩著自己身前的影子。其實,目前各行各業碰到的數據處理多數還是逗小數據地問題。我們應重視實際碰到的問題,不管是大數據還是小數據。
統計學家們花了200多年,總結出認知數據過程中的種種陷阱,這些陷阱不會隨著數據量的增大而自動填平。大數據中有大量的小數據問題,大數據採集同樣會犯小數據採集一樣的統計偏差。Google公司的流感預測這兩年失靈,就是由於搜索推薦等人為的干預造成統計誤差。
大數據界流行一種看法:大數據不需要分析因果關系、不需要采樣、不需要精確數據。這種觀念不能絕對化,實際工作中要邏輯演繹和歸納相結合、白盒與黑盒研究相結合、大數據方法與小數據方法相結合。
5.4 要高度關注構建大數據平台的成本
目前全國各地都在建設大數據中心,呂梁山下都建立了容量達2 PB以上的數據處理中心,許多城市公安部門要求存儲3個月以上的高清監控錄像。這些系統的成本都非常高。數據挖掘的價值是用成本換來的,不能不計成本,盲目建設大數據系統。什麼數據需要保存,要保存多少時間,應當根據可能的價值和所需的成本來決定。大數據系統技術還在研究之中,美國的E級超級計算機系統要求能耗降低1 000倍,計劃到2024年才能研製出來,用現在的技術構建的巨型系統能耗極高。
我們不要攀比大數據系統的規模,而是要比實際應用效果,比完成同樣的事消耗更少的資源和能量。先抓老百姓最需要的大數據應用,因地制宜發展大數據。發展大數據與實現信息化的策略一樣:目標要遠大、起步要精準、發展要快速。