① 數據清洗的內容有哪些
數據清洗的內容包括:選擇子集、列名重命名、缺失值處理、數據類型轉換、異常值處理以及數據排序。
1、選擇子集
在數據分析的過程中,有可能數據量會非常大,但並不是每一列都有分析的價值,這時候就要從這些數據中選擇有用的子集進行分析,這樣才能提高分析的價值和效率。
2、列名重命名
在數據分析的過程中,有些列名和數據容易混淆或者讓人產生歧義。
3、缺失值處理
獲取的數據中很可能存在這缺失值,這會對分析的結果造成影響。
4、數據類型的轉換
在導入數據的時候為了防止導入不進來,python會強制轉換為object類型,然是這樣的數據類型在分析的過程中不利於運算和分析。
數據清洗是指發現並糾正數據文件中可識別的錯誤的最後一道程序,包括檢查數據一致性,處理無效值和缺失值等。與問卷審核不同,錄入後的數據清理一般是由計算機而不是人工完成。
數據清洗方法:一般來說,數據清理是將資料庫精簡以除去重復記錄,並使剩餘部分轉換成標准可接收格式的過程。數據清理標准模型是將數據輸入到數據清理處理器,通過一系列步驟「 清理」數據,然後以期望的格式輸出清理過的數據。數據清理從數據的准確性、完整性、一致性、惟一性、適時性、有效性幾個方面來處理數據的丟失值、越界值、不一致代碼、重復數據等問題。
② 數據分析中如何清洗數據
數據分析中數據集通常包含大量數據,這些數據可能以不易於使用的格式存儲。因此,數據分析師首先需要確保數據格式正確並符合規則集。
此外,合並來自不同來源的數據可能很棘手,數據分析師的另一項工作是確保所得到的信息合並有意義。
數據稀疏和格式不一致是最大的挑戰–這就是數據清理的全部內容。數據清理是一項任務,用於識別不正確,不完整,不準確或不相關的數據,修復問題,並確保將來會自動修復所有此類問題,數據分析師需要花費60%的時間去組織和清理數據!
數據分析中數據清理有哪些步驟?
以下是經驗豐富的開發團隊會採用的一些最常見的數據清理步驟和方法:
處理丟失的數據
標准化流程
驗證數據准確性
刪除重復數據
處理結構錯誤
擺脫不必要的觀察
擴展閱讀:
讓我們深入研究三種選定的方法:
處理丟失的數據——忽略數據集中的丟失值,是一個巨大的錯誤,因為大多數演算法根本不接受它們。一些公司通過其他觀察值推算缺失值或完全丟棄具有缺失值的觀察值來解決此問題。但是這些策略會導致信息丟失(請注意,「無價值」也會告訴我們一些信息。如果公司錯過了分類數據,則可以將其標記為「缺失」。缺失的數字數據應標記為0,以進行演算法估計)在這種情況下的最佳常數。
結構性錯誤——這些是在測量,傳輸數據期間出現的錯誤,以及由於數據管理不善而引起的其他問題。標點符號不一致,錯別字和標簽錯誤是這里最常見的問題。這樣的錯誤很好地說明了數據清理的重要性。
不需要的觀察——處理數據分析的公司經常在數據集中遇到不需要的觀察。這些可以是重復的觀察,也可以是與他們要解決的特定問題無關的觀察。檢查不相關的觀察結果是簡化工程功能流程的好策略-開發團隊將可以更輕松地建立模型。這就是為什麼數據清理如此重要的原因。
對於依賴數據維護其運營的企業而言,數據的質量至關重要。舉個例子,企業需要確保將正確的發票通過電子郵件發送給合適的客戶。為了充分利用客戶數據並提高品牌價值,企業需要關注數據質量。
避免代價高昂的錯誤:
數據清理是避免企業在忙於處理錯誤,更正錯誤的數據或進行故障排除時增加的成本的最佳解決方案。
促進客戶獲取:
保持資料庫狀態良好的企業可以使用准確和更新的數據來開發潛在客戶列表。結果,他們提高了客戶獲取效率並降低了成本。
跨不同渠道理解數據:
數據分析師們在進行數據清理的過程中清除了無縫管理多渠道客戶數據的方式,使企業能夠找到成功開展營銷活動的機會,並找到達到目標受眾的新方法。
改善決策過程:
像干凈的數據一樣,無助於促進決策過程。准確和更新的數據支持分析和商業智能,從而為企業提供了更好的決策和執行資源。
提高員工生產力:
干凈且維護良好的資料庫可確保員工的高生產率,他們可以從客戶獲取到資源規劃的廣泛領域中利用這些信息。積極提高數據一致性和准確性的企業還可以提高響應速度並增加收入。
③ 數據分析中如何清洗數據
在數據分析中我們重點研究的是數據,但是不是每個數據都是我們需要分析的,這就需要我們去清洗數據,通過清洗數據,這樣我們就能夠保證數據分析出一個很好的結果,所以說一個干凈的數據能夠提高數據分析的效率,因此,數據清洗是一個很重要的工作,通過數據的清洗,就能夠統一數據的格式,這樣才能夠減少數據分析中存在的眾多問題,從而提高數據的分析的效率。但是清洗數據需要清洗什麼數據呢?一般來說,清洗數據的對象就是缺失值、重復值、異常值等。
首先給大家說明一下什麼是重復值,所謂重復值,顧名思義,就是重復的數據,數據中存在相同的數據就是重復數據,重復數據一般有兩種情況,第一種就是數據值完全相同的多條數據記錄。另一種就是數據主體相同但匹配到的唯一屬性值不同。這兩種情況復合其中的一種就是重復數據。那麼怎麼去除重復數據呢?一般來說,重復數據的處理方式只有去重和去除兩種方式,去重就是第一種情況的解決方法,去除就是第二種情況的解決方法。
其次給大家說一下什麼是異常值,這里說的異常值就是指一組測試值中宇平均數的偏差超過了兩倍標准差的測定值。而與平均值的偏差超過三倍標准差的測定值則被稱為高度異常值。對於異常值來說,我們一般不作處理,當然,這前提條件就是演算法對異常值不夠敏感。如果演算法對異常值敏感了怎麼處理異常值呢?那麼我們就需要用平均值進行替代,或者視為異常值去處理,這樣可以降低數據異常值的出現。
而缺失值也是數據分析需要清理的對象,所謂缺失值就是數據中由於缺少信息導致數據的分組、缺失被稱為缺失值,存在缺失值的數據中由於某個或者某些數據不是完整的,對數據分析有一定的影響。所以,我們需要對缺失值進行清理,那麼缺失值怎麼清理呢?對於樣本較大的缺失值,我們可以直接刪除,如果樣本較小,我們不能夠直接刪除,因為小的樣本可能會影響到最終的分析結果。對於小的樣本,我們只能通過估算進行清理。
關於數據分析需要清楚的數據就是這篇文章中介紹的重復值、異常值以及缺失值,這些無用的數據大家在清理數據的時候一定要注意,只有這樣才能夠做好數據分析。最後提醒大家的是,大家在清理數據之前一定要保存好自己的原始數據,這樣我們才能夠做好數據的備份。切記切記。
④ 數據挖掘中常用的數據清洗方法有哪些
數據清洗目的主要有:
①解決數據質量問題;
②讓數據更適合做挖掘;
數據清洗是對數據審查過程中發現的明顯錯誤值、缺失值、異常值、可疑數據,選用一定方法進行「清洗」,為後續的數據分析做准備。
數據清洗的方法有:
①數據數值化
對存在各種不同格式的數據形式的原始數據,對其進行標准化操作。對字元串取值,按照ANSI碼值求和得到字元串的值,如果值太大,取一個適當的質數對其求模。
②標准化 normalization
對整體數據進行歸一化工作,利用min-max標准化方法將數據都映射到一個指定的數值區間。
③數據降維
原始數據存在很多維度,使用主成分分析法對數據的相關性分析來降低數據維度。
④數據完整性
數據完整性包括數據缺失補數據和數據去重;
補全數據的方法有:
通過身份證件號碼推算性別、籍貫、出生日期、年齡(包括但不局限)等信息補全;
通過前後數據補全;
實在補不全的,對數據進行剔除。
數據去重的方法有:
用sql或者excel「去除重復記錄」去重;
按規則去重,編寫一系列的規則,對重復情況復雜的數據進行去重。
⑤ 數據清洗需要清洗哪些數據
數據清洗的一般步驟:分析數據、缺失值處理、異常值處理、去重處理、噪音數據處理。在大數據生態圈,有很多來源的數據ETL工具,但是對於公司內部來說,穩定性、安全性和成本都是必須考慮的。
對於數據值缺失的處理,通常使用的方法有下面幾種:
1、刪除缺失值
當樣本數很多的時候,並且出現缺失值的樣本在整個的樣本的比例相對較小,這種情況下,我們可以使用最簡單有效的方法處理缺失值的情況。那就是將出現有缺失值的樣本直接丟棄。這是一種很常用的策略。
2、均值填補法
根據缺失值的屬性相關系數最大的那個屬性把數據分成幾個組,然後分別計算每個組的均值,把這些均值放入到缺失的數值裡面就可以了。
3、熱卡填補法
對於一個包含缺失值的變數,熱卡填充法的做法是:在資料庫中找到一個與它最相似的對象,然後用這個相似對象的值來進行填充。不同的問題可能會選用不同的標准來對相似進行判定。最常見的是使用相關系數矩陣來確定哪個變數(如變數Y)與缺失值所在變數(如變數X)最相關。然後把所有變數按Y的取值大小進行排序。那麼變數X的缺失值就可以用排在缺失值前的那個個案的數據來代替了。
⑥ 4.什麼是數據清理,數據清理一般有哪些內容
數據清理用來自多個聯機事務處理 (OLTP) 系統的數據生成數據倉庫進程的一部分。拼寫、兩個系統之間沖突的拼寫規則和沖突的數據(如對於相同的部分具有兩個編號)之類的錯誤。數據清理工作的目的是不讓有錯誤或有問題的數據進入運算過程,一般在計算機的幫助下完成,包括數據有效范圍的清理、數據邏輯一致性的清理和數據質量的抽查。