導航:首頁 > 數據處理 > 大數據變化如何緩解

大數據變化如何緩解

發布時間:2023-02-26 02:57:39

A. 如何應對大數據時代的變革機遇挑戰

大數據泛指巨量的數據集,因可從中挖掘出有價值的信息而受到重視。《華爾街日報》將大數據時代、智能化生產和無線網路革命稱為引領未來繁榮的三大技術變革。麥肯錫公司的報告指出數據是一種生產資料,大數據是下一個創新、競爭、生產力提高的前沿。世界經濟論壇的報告認定大數據為新財富,價值堪比石油。因此,發達國家紛紛將開發利用大數據作為奪取新一輪競爭制高點的重要抓手。

大數據時代的來臨

互聯網特別是移動互聯網的發展,加快了信息化向社會經濟各方面、大眾日常生活的滲透。有資料顯示,1998年全球網民平均每月使用流量是1MB(兆位元組),2000年是10MB,2003年是100MB,2008年是1GB(1GB等於1024MB),2014年將是10GB。全網流量累計達到1EB(即10億GB或1000PB)的時間在2001年是一年,在2004年是一個月,在2007年是一周,而2013年僅需一天,即一天產生的信息量可刻滿1.88億張DVD光碟。我國網民數居世界之首,每天產生的數據量也位於世界前列。淘寶網站每天有超過數千萬筆交易,單日數據產生量超過50TB(1TB等於1000GB),存儲量40PB(1PB等於1000TB)。網路公司目前數據總量接近1000PB,存儲網頁數量接近1萬億頁,每天大約要處理60億次搜索請求,幾十PB數據。一個8Mbps(兆比特每秒)的攝像頭一小時能產生3.6GB數據,一個城市若安裝幾十萬個交通和安防攝像頭,每月產生的數據量將達幾十PB。醫院也是數據產生集中的地方。現在,一個病人的CT影像數據量達幾十GB,而全國每年門診人數以數十億計,並且他們的信息需要長時間保存。總之,大數據存在於各行各業,一個大數據時代正在到來。

信息爆炸不自今日起,但近年來人們更加感受到大數據的來勢迅猛。一方面,網民數量不斷增加,另一方面,以物聯網和家電為代表的聯網設備數量增長更快。2007年全球有5億個設備聯網,人均0.1個;2013年全球將有500億個設備聯網,人均70個。隨著寬頻化的發展,人均網路接入帶寬和流量也迅速提升。全球新產生數據年增40%,即信息總量每兩年就可以翻番,這一趨勢還將持續。目前,單一數據集容量超過幾十TB甚至數PB已不罕見,其規模大到無法在容許的時間內用常規軟體工具對其內容進行抓取、管理和處理。

數據規模越大,處理的難度也越大,但對其進行挖掘可能得到的價值更大,這就是大數據熱的原因。首先,大數據反映輿情和民意。網民在網上產生的海量數據,記錄著他們的思想、行為乃至情感,這是信息時代現實社會與網路空間深度融合的產物,蘊含著豐富的內涵和很多規律性信息。根據中國互聯網路信息中心統計,2012年底我國網民數為5.64億,手機網民為4.2億,通過分析相關數據,可以了解大眾需求、訴求和意見。其次,企業和政府的信息系統每天源源不斷產生大量數據。根據賽門鐵克公司的調研報告,全球企業的信息存儲總量已達2.2ZB(1ZB等於1000EB),年增67%。醫院、學校和銀行等也都會收集和存儲大量信息。政府可以部署感測器等感知單元,收集環境和社會管理所需的信息。2011年,英國《自然》雜志曾出版專刊指出,倘若能夠更有效地組織和使用大數據,人類將得到更多的機會發揮科學技術對社會發展的巨大推動作用。

大數據應用的領域

大數據技術可運用到各行各業。宏觀經濟方面,IBM日本公司建立經濟指標預測系統,從互聯網新聞中搜索影響製造業的480項經濟數據,計算采購經理人指數的預測值。印第安納大學利用谷歌公司提供的心情分析工具,從近千萬條網民留言中歸納出六種心情,進而對道瓊斯工業指數的變化進行預測,准確率達到87%。製造業方面,華爾街對沖基金依據購物網站的顧客評論,分析企業產品銷售狀況;一些企業利用大數據分析實現對采購和合理庫存量的管理,通過分析網上數據了解客戶需求、掌握市場動向。有資料顯示,全球零售商因盲目進貨導致的銷售損失每年達1000億美元,這方面的數據分析大有作為。

在農業領域,矽谷有個氣候公司,從美國氣象局等資料庫中獲得幾十年的天氣數據,將各地降雨、氣溫、土壤狀況與歷年農作物產量的相關度做成精密圖表,預測農場來年產量,向農戶出售個性化保險。在商業領域,沃爾瑪公司通過分析銷售數據,了解顧客購物習慣,得出適合搭配在一起出售的商品,還可從中細分顧客群體,提供個性化服務。在金融領域,華爾街「德溫特資本市場」公司分析3.4億微博賬戶留言,判斷民眾情緒,依據人們高興時買股票、焦慮時拋售股票的規律,決定公司股票的買入或賣出。阿里公司根據在淘寶網上中小企業的交易狀況篩選出財務健康和講究誠信的企業,對他們發放無需擔保的貸款。目前已放貸300多億元,壞賬率僅0.3%。

在醫療保健領域,「谷歌流感趨勢」項目依據網民搜索內容分析全球范圍內流感等病疫傳播狀況,與美國疾病控制和預防中心提供的報告對比,追蹤疾病的精確率達到97%。社交網路為許多慢性病患者提供臨床症狀交流和診治經驗分享平台,醫生藉此可獲得在醫院通常得不到的臨床效果統計數據。基於對人體基因的大數據分析,可以實現對症下葯的個性化治療。在社會安全管理領域,通過對手機數據的挖掘,可以分析實時動態的流動人口來源、出行,實時交通客流信息及擁堵情況。利用簡訊、微博、微信和搜索引擎,可以收集熱點事件,挖掘輿情,還可以追蹤造謠信息的源頭。美國麻省理工學院通過對十萬多人手機的通話、簡訊和空間位置等信息進行處理,提取人們行為的時空規律性,進行犯罪預測。在科學研究領域,基於密集數據分析的科學發現成為繼實驗科學、理論科學和計算科學之後的第四個範例,基於大數據分析的材料基因組學和合成生物學等正在興起。

麥肯錫公司2011年報告推測,如果把大數據用於美國的醫療保健,一年產生潛在價值3000億美元,用於歐洲的公共管理可獲得年度潛在價值2500億歐元;服務提供商利用個人位置數據可獲得潛在的消費者年度盈餘6000億美元;利用大數據分析,零售商可增加運營利潤60%,製造業設備裝配成本會減少50%。

大數據技術的挑戰和啟示

目前,大數據技術的運用仍存在一些困難與挑戰,體現在大數據挖掘的四個環節中。首先在數據收集方面。要對來自網路包括物聯網和機構信息系統的數據附上時空標志,去偽存真,盡可能收集異源甚至是異構的數據,必要時還可與歷史數據對照,多角度驗證數據的全面性和可信性。其次是數據存儲。要達到低成本、低能耗、高可靠性目標,通常要用到冗餘配置、分布化和雲計算技術,在存儲時要按照一定規則對數據進行分類,通過過濾和去重,減少存儲量,同時加入便於日後檢索的標簽。第三是數據處理。有些行業的數據涉及上百個參數,其復雜性不僅體現在數據樣本本身,更體現在多源異構、多實體和多空間之間的交互動態性,難以用傳統的方法描述與度量,處理的復雜度很大,需要將高維圖像等多媒體數據降維後度量與處理,利用上下文關聯進行語義分析,從大量動態而且可能是模稜兩可的數據中綜合信息,並導出可理解的內容。第四是結果的可視化呈現,使結果更直觀以便於洞察。目前,盡管計算機智能化有了很大進步,但還只能針對小規模、有結構或類結構的數據進行分析,談不上深層次的數據挖掘,現有的數據挖掘演算法在不同行業中難以通用。

大數據技術的運用前景是十分光明的。當前,我國正處在全面建成小康社會征程中,工業化、信息化、城鎮化、農業現代化任務很重,建設下一代信息基礎設施,發展現代信息技術產業體系,健全信息安全保障體系,推進信息網絡技術廣泛運用,是實現四化同步發展的保證。大數據分析對我們深刻領會世情和國情,把握規律,實現科學發展,做出科學決策具有重要意義,我們必須重新認識數據的重要價值。

為了開發大數據這一金礦,我們要做的工作還很多。首先,大數據分析需要有大數據的技術與產品支持。發達國家一些信息技術(IT)企業已提前發力,通過加大開發力度和兼並等多種手段,努力向成為大數據解決方案提供商轉型。國外一些企業打出免費承接大數據分析的招牌,既是為了練兵,也是為了獲取情報。過分依賴國外的大數據分析技術與平台,難以迴避信息泄密風險。有些日常生活信息看似無關緊要,其實從中也可摸到國家經濟和社會脈搏。因此,我們需要有自主可控的大數據技術與產品。美國政府2012年3月發布《大數據研究與發展倡議》,這是繼1993年宣布「信息高速公路」之後又一重大科技部署,聯邦政府和一些部委已安排資金用於大數據開發。我們與發達國家有不少差距,更需要國家政策支持。

中國人口居世界首位,將會成為產生數據量最多的國家,但我們對數據保存不夠重視,對存儲數據的利用率也不高。此外,我國一些部門和機構擁有大量數據卻不願與其他部門共享,導致信息不完整或重復投資。政府應通過體制機制改革打破數據割據與封鎖,應注重公開信息,應重視數據挖掘。美國聯邦政府建立統一數據開放門戶網站,為社會提供信息服務並鼓勵挖掘與利用。例如,提供各地天氣與航班延誤的關系,推動航空公司提升正點率。

大數據的挖掘與利用應當有法可依。去年底全國人大通過的加強網路信息保護的決定是一個好的開始,當前要盡快制定「信息公開法」以適應大數據時代的到來。現在很多機構和企業擁有大量客戶信息。應當既鼓勵面向群體、服務社會的數據挖掘,又要防止侵犯個體隱私;既提倡數據共享,又要防止數據被濫用。此外,還需要界定數據挖掘、利用的許可權和范圍。大數據系統本身的安全性也是值得特別關注的,要注意技術安全性和管理制度安全性並重,防止信息被損壞、篡改、泄露或被竊,保護公民和國家的信息安全。

大數據時代呼喚創新型人才。蓋特納咨詢公司預測大數據將為全球帶來440萬個IT新崗位和上千萬個非IT崗位。麥肯錫公司預測美國到2018年需要深度數據分析人才44萬—49萬,缺口14萬—19萬人;需要既熟悉本單位需求又了解大數據技術與應用的管理者150萬,這方面的人才缺口更大。中國是人才大國,但能理解與應用大數據的創新人才更是稀缺資源。

大數據是新一代信息技術的集中反映,是一個應用驅動性很強的服務領域,是具有無窮潛力的新興產業領域;目前,其標准和產業格局尚未形成,這是我國實現跨越式發展的寶貴機會。我們要從戰略上重視大數據的開發利用,將它作為轉變經濟增長方式的有效抓手,但要注意科學規劃,切忌一哄而上。

(作者:中國工程院院士)

B. 大數據時代的應對措施

一個好的企業應該未雨綢繆,從現在開始就應該著手准備,為企業的後期的數據收集和分析做好准備,企業可以從下面六個方面著手,這樣當面臨鋪天蓋地的大數據的時候,以確保企業能夠快速發展,具體為下面六點。
目標
幾乎每個組織都可能有源源不斷的數據需要收集,無論是社交網路還是車間感測器設備,而且每個組織都有大量的數據需要處理,IT人員需要了解自己企業運營過程中都產生了什麼數據,以自己的數據為基準,確定數據的范圍。
准則
雖然每個企業都會產生大量數據,而且互不相同、多種多樣的,這就需要企業IT人員在現在開始收集確認什麼數據是企業業務需要的,找到最能反映企業業務情況的數據。
重新評估
大數據需要在伺服器和存儲設施中進行收集,並且大多數的企業信息管理體系結構將會發生重要大變化,IT經理則需要准備擴大他們的系統,以解決數據的不斷擴大,IT經理要了解公司現有IT設施的情況,以組建處理大數據的設施為導向,避免一些不必要的設備的購買。
重視大數據技術
大數據是最近幾年才興起的詞語,而並不是所有的IT人員對大數據都非常了解,例如如今的Hadoop,MapRece,NoSQL等技術都是2013年剛興起的技術,企業IT人員要多關注這方面的技術和工具,以確保將來能夠面對大數據的時候做出正確的決定。
培訓企業的員工
大多數企業最缺乏的是人才,而當大數據到臨的時候,企業將會缺少這方面的採集收集分析方面的人才,對於一些公司,特別是那種人比較少的公司,工作人員面臨大數據將是一種挑戰,企業要在平時的時候多對員工進行這方面的培訓,以確保在大數據到來時,員工也能適應相關的工作。
培養三種能力
Teradata大中華區首席執行官辛兒倫對新浪科技表示,隨著大數據時代的到來,企業應該在內部培養三種能力。第一,整合企業數據的能力;第二,探索數據背後價值和制定精確行動綱領的能力;第三,進行精確快速實時行動的能力。
做到上面的幾點,當大數據時代來臨的時候,面臨大量數據將不是束手無策,而是成竹在胸,而從數據中得到的好處也將促進企業快速發展。

C. 如何用大數據解決生活中的問題

1、應用於能源


隨著工業化進程的加快,大量溫室氣體的排放,全球氣候發生了變化,因此推動低碳環保顯得尤為重要。將大數據技術應用到能源領域可以為低碳做出巨大貢獻。低碳能源大數據主要由能源信息採集、能源分布式運行、能源數據統計分析、能源調度四個模塊組成。通過這四個模塊,可以科學、自動、高效地實現能源生產和能源管理,實現節能。


2、醫學應用


大數據在醫療領域的應用主要是通過收集和分析大數據進行疾病的預防和治療。患者佩戴大數據設備後,該設備可以收集有意義的數據。通過大數據分析,可以監測患者的生理狀態,從而幫助醫生及時、准確、有效地治療患者。據新華網報道,大數據分析可以讓我們在幾分鍾內解碼整個DNA,找到新的治療方法,更好地理解和預測疾病模式。


3、對於金融業來說


大數據在金融業的主要應用是金融交易。許多股權交易都是使用大數據演算法進行的,大數據演算法可以快速決定是否出售商品,使交易更加簡潔和准確。在這個大數據時代,把握市場機遇,快速實現大數據商業模式創新顯得尤為重要。


4、應用於地理信息


地理信息系統(GIS)需要及時處理相關的空間信息,以及存儲的大量數據和工作任務。將大數據技術合理地應用到地理信息系統中,不僅可以及時處理地理信息,而且可以提高處理結果的准確性。


5、應用於消費


為了在未來的市場中站穩腳跟,建立大資料庫,充分利用大數據技術顯得尤為重要。淘寶、京東等企業將通過大數據技術自動記錄用戶交易數據,對用戶信用進行分析和記錄,形成長期龐大的資料庫,為後續金融業務布局提供徵信和風控數據。


6、應用於製造業


大數據影響生產力,使機器設備在應用中更加智能化、自主化,使生產過程更加簡潔、准確、安全,提高生產能力。此外,大數據技術可以幫助企業了解客戶的偏好,從而生產出市場需要的產品。


關於如何用大數據解決生活中的問題,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

D. 大數據殺熟怎麼解決

大數據「殺熟」,「殺」的是消費者,危及的是整個行業,甚至是全社會。不僅大肆消耗用戶的信任,更會殃及社會誠信。建設新型消費社會,消費者權益必須保障,被詬病已久的大數據「殺熟」必須根治。

首先,根治大數據「殺熟」,民心所向,法律當有所為。治理大數據「殺熟」等各種「店大欺客」行為,有關部門應加強相關立法工作,堵住監管漏洞,提高違法成本。

其次,創新大數據監管方式。科技不是「屠刀」,不該助紂為虐,有關監管部門當從技術層面上,建立相應的大數據網上監管平台,針對網路信息平台進行全天候在線監管,提高對各種利用隱性大數據違法行為的查處能力。

第三,建立失信黑名單制度。一旦發現平台有「殺熟」行為,不僅要給予其行政處罰,還要將其納入誠信黑名單。

第四,平台當自治自律。平台應該意識到,誠信才是立商之本,不要一股腦地往「錢」看。利用大數據進行「殺熟」,既辜負了消費者的信任,也傷害了其利益,是一種竭澤而漁的做法。

最後,消費者應多個「心眼」。大數據「殺熟」套路多,消費者防不勝防。消費者不妨多個平台比差價,秉承貨比三家原則,偽裝成價格敏感型用戶,以此「迷惑」大數據。

科技讓生活更美好,無論新技術的規則怎樣變化,發展迭代怎樣迅速,都不應壞了誠信為本的經商老規矩。相信隨著各項政策、法律、法規的完善以及互聯網平台的自製、自律,形成執法者、網路平台、消費者三方共治的互聯網經濟新形態,由大數據技術引發的「殺熟」亂象就可以從根本上得到遏制,讓消費者明明白白的消費。

E. 大數據時代應如何應對變革帶來的機遇與挑戰

大數據時代應如何應對變革帶來的機遇與挑戰

大數據時代帶給我們更多沖擊,要想與時俱進,並不斷的提升,那就要摒棄原來的傳統思想,大膽努力的接受大數據帶來的新挑戰。想要弄清楚大數據時代帶給我們的變化,那就要先知道大數據是什麼,這樣方可以更好的迎接大挑戰,應對時代帶來的變革。大數據是指海量的數據,這是非結構化的數據,無法用傳統的數據來處理。大數據技術的應用給人們生活帶來了諸多的便利性,許多疫情的報告都來源於大數據。
大數據的應用並不是那麼簡單,其引發的是模式的變革,其應用不僅僅是發電、輸電,而是基於互聯網技術,這對於人們的生產過程以及商品交換帶來了變革性的影響。整個變革過程的技術手段就是數據的挖掘與分析,其是在互聯網基礎上,將使製造行業的生產效率大幅度提升。大靈氣無法產生新的物質產品,也無法創造新的市場需求,但卻可以大幅度的提升生產力。
國際上對於大數據的定義了四大特徵,那就是海量的數據規模、快速的數據流轉、動態的數據體系、多樣的數據類型以及巨大的數據價值。基於大數據的全國的數據信息總量每兩年就翻番。對於企業而言,大數據來源於企業內部信息系統所產生的運營數據,數據越大結果越好。成功的進入大數據時代,企業將擁有更多的發展潛能。
通過對大數據的處理,人們放棄了因果關系而選擇了相互聯系。在未來的幾年內,大數據將成為提升公司競爭力的有力基礎,行業與行業之間的競爭將演變為數據的競爭,所以,解決數據資源的搜索與共享將成為當務之急。以互聯網行業的代表阿里巴巴和谷歌為例,前者的伺服器都達到了上萬台,而後者則超過了五十萬台,這就是數據的差別。
大數據是一種運營模式,數據的膨脹決定了企業的未來發展方向,越來越多的企業意識到了數據增漲的隱患。隨著時間的推移,數據對於人們和企業的重要性會越發突顯。

F. 網貸大數據不好的原因有哪些怎麼查

大數據不好的原因有頻繁申貸、貸款頻繁、多次貸款逾期等不良信用行為過多等。

查詢個人網貸大數據的渠道很多。

可以查詢網貸資料庫。只需要打開微信找到:早知數據。點擊查詢,輸入信息即可查詢到自己的徵信數據,該數據源自全國2000多家網貸平台和銀聯中心,用戶可以查詢到自身的大數據與信用情況,可以獲取各類指標,查詢到自己的個人信用情況,網黑指數分,黑名單情況,網貸申請記錄,申請平台類型,是否逾期,逾期金額,信用卡與網貸授信預估額度等重要數據信息等。

G. 大數據改革時代我們該如何去應對

大數據改革時代我們該如何去應對

對大數據進行進一步深度的分析,並挖掘出對企業發展有利的數據,這是現代企業最常見的行為。而通過對市場的整體分析了解經濟增長的內動力以及結構變化和調整,進一步調整產業,以便更好的發揮企業優勢,贏得市場,成為同行中的佼佼者,這是任何企業都希望看到的。但是,從大數據提出以來,越來越多的企業表示自己似乎看不懂,大數據變化的太快,讓人捉摸不透。而對大數據的改革,我們該如何應對呢?

一、化零為整

數據是零散的,就像一盤散沙,分散在世界各地,企業要想分析市場,就要將這盤散沙捧起來,運用數據分析技術以及特長分析、挖掘埋藏在數據當中的寶貴價值,實現更好的決策,推動企業相關決策的進行。

二、去糟粕,挖精髓

數據泛濫的最直接後果就是數據中有大量無用數據的存在,這些無用的數據會對數據分析技術人員的分析行為造成一定的困擾,對此,技術人員需要對其進行整理、清洗,去掉無用的數據,將有價值的大數據挖掘出來,進行科學管理和分析,嚴格控制數據的質量,做到真正的數出有源、真實可靠。

三、重視數據源

大數據時代,數據來源不可能僅有一點,尤其是在行業分析當中,不僅要分析自己行業的發展,還要分析競爭對手的數據,更甚者需要分析市場環境的數據。多方面下手才能真正分析出到底是怎麼回事,該如何去應對市場危機。

然而,不少企業用戶在分析數據的時候,不捨得下血本,只是簡單的對自己產品的用戶行為以及各種數據進行分析,並不會投資分析大環境以及競爭對數,這樣可能導致企業在發展過程中,看不清市場環境,無法做出正確的判斷,也就是我們所說的決策失誤。

當然,大數據涉及各行各業,分析大數據,不可能僅看一方面,也不可能毫無預算的去分析所有的數據,這樣會導致很多浪費,也會增加企業的成本支出。作為現代化企業,最好的做法是轉變自己的經營思路,加強各部門之間的溝通協調、保證數據收集的精準,為企業大數據的發展提供更好的環境。

以上是小編為大家分享的關於大數據改革時代我們該如何去應對的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與大數據變化如何緩解相關的資料

熱點內容
客服跟代理有什麼區別 瀏覽:116
哪些手游端能交易 瀏覽:194
河南哪裡有古董交易市場 瀏覽:817
時富交易所是什麼 瀏覽:713
徠卡全站儀如何提取數據 瀏覽:653
雲南男裝代理有哪些牌子 瀏覽:831
南寧面料市場到哪個站下車 瀏覽:155
縣城技術類事業單位工資一般多少 瀏覽:33
淺談通過會計信息化有什麼收獲 瀏覽:464
spss數據模板是什麼 瀏覽:23
文檔篩選刪除後剩餘的數據在哪裡 瀏覽:557
市場半邊天是什麼意思 瀏覽:46
真正的名牌服裝批發市場在哪裡 瀏覽:156
菜市場買花甲怎麼選 瀏覽:754
微信小程序奧特曼抽卡游戲王的激活碼是什麼 瀏覽:131
數據線灰藍是什麼意思 瀏覽:144
天貓產品如何查總銷量 瀏覽:184
如何查詢銀行貴金屬交易信息 瀏覽:711
地區代理商有什麼條件 瀏覽:949
店鋪交易稅怎麼減少 瀏覽:245