『壹』 數據加工處理的方法有哪些
數據處理,是對數據的採集、存儲、檢索、加工、變換和傳輸。根據處理設備的結構方式、工作方式,以及數據的時間空間分布方式的不同,數據處理有不同的方式。不同的處理方式要求不同的硬體和軟體支持。每種處理方式都有自己的特點,應當根據應用問題的實際環境選擇合適的處理方式。根據處理設備的結構方式、工作方式,以及數據的時間空間分布方式的不同,數據處理有不同的方式。不同的處理方式要求不同的硬體和軟體支持。每種處理方式都有自己的特點,應當根據應用問題的實際環境選擇合適的處理方式。數據處理主要有四種分類方式①根據處理設備的結構方式區分,有聯機處理方式和離線處理方式。②根據數據處理時間的分配方式區分,有批處理方式、分時處理方式和實時處理方式。③根據數據處理空間的分布方式區分,有集中式處理方式和分布處理方式。④根據計算機中央處理器的工作方式區分,有單道作業處理方式、多道作業處理方式和互動式處理方式。
數據處理對數據(包括數值的和非數值的)進行分析和加工的技術過程。包括對各種原始數據的分析、整理、計算、編輯等的加工和處理。比數據分析含義廣。隨著計算機的日益普及,在計算機應用領域中,數值計算所佔比重很小,通過計算機數據處理進行信息管理已成為主要的應用。如側繪制圖管理、倉庫管理、財會管理、交通運輸管理,技術情報管理、辦公室自動化等。在地理數據方面既有大量自然環境數據(土地、水、氣候、生物等各類資源數據),也有大量社會經濟數據(人口、交通、工農業等),常要求進行綜合性數據處理。故需建立地理資料庫,系統地整理和存儲地理數據減少冗餘,發展數據處理軟體,充分利用資料庫技術進行數據管理和處理。
『貳』 資料庫性能優化有哪些措施
1、調整數據結構的設計
這一部分在開發信息系統之前完成,程序員需要考慮是否使用ORACLE資料庫的分區功能,對於經常訪問的資料庫表是否需要建立索引等。
2、調整應用程序結構設計
這一部分也是在開發信息系統之前完成,程序員在這一步需要考慮應用程序使用什麼樣的體系結構,是使用傳統的Client/Server兩層體系結構,還是使用Browser/Web/Database的三層體系結構。不同的應用程序體系結構要求的資料庫資源是不同的。
3、調整資料庫SQL語句
應用程序的執行最終將歸結為資料庫中的SQL語句執行,因此SQL語句的執行效率最終決定了ORACLE資料庫的性能。ORACLE公司推薦使用ORACLE語句優化器(OracleOptimizer)和行鎖管理器(row-levelmanager)來調整優化SQL語句。
4、調整伺服器內存分配
內存分配是在信息系統運行過程中優化配置的,資料庫管理員可以根據資料庫運行狀況調整資料庫系統全局區(SGA區)的數據緩沖區、日誌緩沖區和共享池的大小;還可以調整程序全局區(PGA區)的大小。需要注意的是,SGA區不是越大越好,SGA區過大會佔用操作系統使用的內存而引起虛擬內存的頁面交換,這樣反而會降低系統。
5、調整硬碟I/O
這一步是在信息系統開發之前完成的。資料庫管理員可以將組成同一個表空間的數據文件放在不同的硬碟上,做到硬碟之間I/O負載均衡。
6、調整操作系統參數
例如:運行在UNIX操作系統上的ORACLE資料庫,可以調整UNIX數據緩沖池的大小,每個進程所能使用的內存大小等參數。
實際上,上述資料庫優化措施之間是相互聯系的。ORACLE資料庫性能惡化表現基本上都是用戶響應時間比較長,需要用戶長時間的等待。但性能惡化的原因卻是多種多樣的,有時是多個因素共同造成了性能惡化的結果,這就需要資料庫管理員有比較全面的計算機知識,能夠敏感地察覺到影響資料庫性能的主要原因所在。另外,良好的資料庫管理工具對於優化資料庫性能也是很重要的。
一、ORACLE資料庫性能優化工具
常用的資料庫性能優化工具有:
ORACLE資料庫在線數據字典,ORACLE在線數據字典能夠反映出ORACLE動態運行情況,對於調整資料庫性能是很有幫助的。
操作系統工具,例如UNIX操作系統的vmstat,iostat等命令可以查看到系統系統級內存和硬碟I/O的使用情況,這些工具對於管理員弄清出系統瓶頸出現在什麼地方有時候很有用。
SQL語言跟蹤工具(SQLTRACEFACILITY),SQL語言跟蹤工具可以記錄SQL語句的執行情況,管理員可以使用虛擬表來調整實例,使用SQL語句跟蹤文件調整應用程序性能。SQL語言跟蹤工具將結果輸出成一個操作系統的文件,管理員可以使用TKPROF工具查看這些文件。
ORACLEEnterpriseManager(OEM),這是一個圖形的用戶管理界面,用戶可以使用它方便地進行資料庫管理而不必記住復雜的ORACLE資料庫管理的命令。
EXPLAINPLAN——SQL語言優化命令,使用這個命令可以幫助程序員寫出高效的SQL語言。
二、ORACLE資料庫的系統性能評估
信息系統的類型不同,需要關注的資料庫參數也是不同的。資料庫管理員需要根據自己的信息系統的類型著重考慮不同的資料庫參數。
1、在線事務處理信息系統(OLTP),這種類型的信息系統一般需要有大量的Insert、Update操作,典型的系統包括民航機票發售系統、銀行儲蓄系統等。OLTP系統需要保證資料庫的並發性、可靠性和最終用戶的速度,這類系統使用的ORACLE資料庫需要主要考慮下述參數:
資料庫回滾段是否足夠?
是否需要建立ORACLE資料庫索引、聚集、散列?
系統全局區(SGA)大小是否足夠?
SQL語句是否高效?
2、數據倉庫系統(DataWarehousing),這種信息系統的主要任務是從ORACLE的海量數據中進行查詢,得到數據之間的某些規律。資料庫管理員需要為這種類型的ORACLE資料庫著重考慮下述參數:
是否採用B*-索引或者bitmap索引?
是否採用並行SQL查詢以提高查詢效率?
是否採用PL/SQL函數編寫存儲過程?
有必要的話,需要建立並行資料庫提高資料庫的查詢效率
三、SQL語句的調整原則
SQL語言是一種靈活的語言,相同的功能可以使用不同的語句來實現,但是語句的執行效率是很不相同的。程序員可以使用EXPLAINPLAN語句來比較各種實現方案,並選出最優的實現方案。總得來講,程序員寫SQL語句需要滿足考慮如下規則:
1、盡量使用索引。試比較下面兩條SQL語句:
語句A:SELECTdname,
(SELECTdeptnoFROMemp);
語句B:SELECTdname,deptnoFROMdeptWHERENOTEXISTS
(SELECTdeptnoFROMempWHEREdept.deptno=emp.deptno);
這兩條查詢語句實現的結果是相同的,但是執行語句A的時候,ORACLE會對整個emp表進行掃描,沒有使用建立在emp表上的deptno索引,執行語句B的時候,由於在子查詢中使用了聯合查詢,ORACLE只是對emp表進行的部分數據掃描,並利用了deptno列的索引,所以語句B的效率要比語句A的效率高一些。
2、選擇聯合查詢的聯合次序。考慮下面的例子:
SELECTstuffFROMtabaa,tabbb,tabcc
WHEREa.acolbetween:alowand:ahigh
ANDb.bcolbetween:blowand:bhigh
ANDc.ccolbetween:clowand:chigh
ANDa.key1=b.key1
AMDa.key2=c.key2;
這個SQL例子中,程序員首先需要選擇要查詢的主表,因為主表要進行整個表數據的掃描,所以主表應該數據量最小,所以例子中表A的acol列的范圍應該比表B和表C相應列的范圍小。
3、在子查詢中慎重使用IN或者NOTIN語句,使用where(NOT)exists的效果要好的多。
4、慎重使用視圖的聯合查詢,尤其是比較復雜的視圖之間的聯合查詢。一般對視圖的查詢最好都分解為對數據表的直接查詢效果要好一些。
5、可以在參數文件中設置SHARED_POOL_RESERVED_SIZE參數,這個參數在SGA共享池中保留一個連續的內存空間,連續的內存空間有益於存放大的SQL程序包。
6、ORACLE公司提供的DBMS_SHARED_POOL程序可以幫助程序員將某些經常使用的存儲過程「釘」在SQL區中而不被換出內存,程序員對於經常使用並且佔用內存很多的存儲過程「釘」到內存中有利於提高最終用戶的響應時間。
四、CPU參數的調整
CPU是伺服器的一項重要資源,伺服器良好的工作狀態是在工作高峰時CPU的使用率在90%以上。如果空閑時間CPU使用率就在90%以上,說明伺服器缺乏CPU資源,如果工作高峰時CPU使用率仍然很低,說明伺服器CPU資源還比較富餘。
使用操作相同命令可以看到CPU的使用情況,一般UNIX操作系統的伺服器,可以使用sar_u命令查看CPU的使用率,NT操作系統的伺服器,可以使用NT的性能管理器來查看CPU的使用率。
資料庫管理員可以通過查看v$sysstat數據字典中「CPUusedbythissession」統計項得知ORACLE資料庫使用的CPU時間,查看「OSUserlevelCPUtime」統計項得知操作系統用戶態下的CPU時間,查看「OSSystemcallCPUtime」統計項得知操作系統系統態下的CPU時間,操作系統總的CPU時間就是用戶態和系統態時間之和,如果ORACLE資料庫使用的CPU時間占操作系統總的CPU時間90%以上,說明伺服器CPU基本上被ORACLE資料庫使用著,這是合理,反之,說明伺服器CPU被其它程序佔用過多,ORACLE資料庫無法得到更多的CPU時間。
資料庫管理員還可以通過查看v$sesstat數據字典來獲得當前連接ORACLE資料庫各個會話佔用的CPU時間,從而得知什麼會話耗用伺服器CPU比較多。
出現CPU資源不足的情況是很多的:SQL語句的重解析、低效率的SQL語句、鎖沖突都會引起CPU資源不足。
1、資料庫管理員可以執行下述語句來查看SQL語句的解析情況:
SELECT*FROMV$SYSSTATWHERENAMEIN
('parsetimecpu','parsetimeelapsed','parsecount(hard)');
這里parsetimecpu是系統服務時間,parsetimeelapsed是響應時間,用戶等待時間,waitetime=parsetimeelapsed_parsetimecpu
由此可以得到用戶SQL語句平均解析等待時間=waitetime/parsecount。這個平均等待時間應該接近於0,如果平均解析等待時間過長,資料庫管理員可以通過下述語句
SELECTSQL_TEXT,PARSE_CALLS,EXECUTIONSFROMV$SQLAREA
ORDERBYPARSE_CALLS;
來發現是什麼SQL語句解析效率比較低。程序員可以優化這些語句,或者增加ORACLE參數SESSION_CACHED_CURSORS的值。
2、資料庫管理員還可以通過下述語句:
SELECTBUFFER_GETS,EXECUTIONS,SQL_TEXTFROMV$SQLAREA;
查看低效率的SQL語句,優化這些語句也有助於提高CPU的利用率。
3、資料庫管理員可以通過v$system_event數據字典中的「latchfree」統計項查看ORACLE資料庫的沖突情況,如果沒有沖突的話,latchfree查詢出來沒有結果。如果沖突太大的話,資料庫管理員可以降低spin_count參數值,來消除高的CPU使用率。
五、內存參數的調整
內存參數的調整主要是指ORACLE資料庫的系統全局區(SGA)的調整。SGA主要由三部分構成:共享池、數據緩沖區、日誌緩沖區。
1、共享池由兩部分構成:共享SQL區和數據字典緩沖區,共享SQL區是存放用戶SQL命令的區域,數據字典緩沖區存放資料庫運行的動態信息。資料庫管理員通過執行下述語句:
select(sum(pins-reloads))/sum(pins)"LibCache"fromv$librarycache;
來查看共享SQL區的使用率。這個使用率應該在90%以上,否則需要增加共享池的大小。資料庫管理員還可以執行下述語句:
select(sum(gets-getmisses-usage-fixed))/sum(gets)"RowCache"fromv$rowcache;
查看數據字典緩沖區的使用率,這個使用率也應該在90%以上,否則需要增加共享池的大小。
2、數據緩沖區。資料庫管理員可以通過下述語句:
SELECTname,valueFROMv$sysstatWHEREnameIN('dbblockgets','consistentgets','physicalreads');
來查看資料庫數據緩沖區的使用情況。查詢出來的結果可以計算出來數據緩沖區的使用命中率=1-(physicalreads/(dbblockgets+consistentgets))。
這個命中率應該在90%以上,否則需要增加數據緩沖區的大小。
3、日誌緩沖區。資料庫管理員可以通過執行下述語句:
selectname,valuefromv$sysstatwherenamein('redoentries','redologspacerequests');
查看日誌緩沖區的使用情況。查詢出的結果可以計算出日誌緩沖區的申請失敗率:
申請失敗率=requests/entries,申請失敗率應該接近於0,否則說明日誌緩沖區開設太小,需要增加ORACLE資料庫的日誌緩沖區。
昆明北大青鳥java培訓班轉載自網路如有侵權請聯系我們感謝您的關注謝謝支持
『叄』 參數與圖像分割效果的關系
分割方法
1、閾值化
2、基於邊緣的
3、基於區域的
主要的分割問題有圖像數據的不明確性和信息噪音
分割過程中可得到的先驗信息越多,所能獲得的分割效果就越好
基於閾值化的分割
閾值化是最簡單的圖像分割處理,計算代價小,速度快。
可以使用一個常量閾值來分割物體和背景
簡單的場景中,如果物體彼此不接觸,且它們的 灰度 與背景的灰度 有明顯的不同
則閾值化就是一個合適的分割方法
選擇正確的閾值是分割成功的關鍵
既可以在整個圖像上施加閾值(全局閾值),也可以依賴圖像部分而改變的閾值(局部閾值)
(單個閾值在整個圖像上成功的情況比較少見)
對於非簡單的圖像
這種情況下,使用變化的閾值:自適應閾值
閾值化有許多修正
1、局部閾值化 : 閾值與位置相關,將圖像劃分為子圖像,每個子圖像獨立地確定一個閾值
2、帶閾值化:將圖像分割為一個區域內的灰度區域,其他視為背景
3、多閾值化等:圖像不再是二值的,而是一個 有限的多灰度 集合(分成不同區域,每個區域一個灰度)
閾值檢測方式自動地確定閾值。
如果事先知道分割後的圖像的某種性質,就可以簡化閾值選擇,可以按照該性質得以滿足的條件來選擇。
1、p率閾值化
知道「有用信息」的比率 p ,選擇一個閾值 使得切分比例 剛好合適比率 p
2、直方圖形狀分析:
如果圖像 有別於背景灰度值 的,近似相同灰度的物體 所組成
(物體內灰度類似,物體與背景有差異)
若圖像所產生的的直方圖是 二模態 的
(就是直方圖呈現「兩個峰」,一個為物體,另一個為背景)
則選擇 兩個極大值之間的 極小值的灰度 作為閾值
(兩個像素數量很多的灰度 之間的 一個像素數量很少的灰度 作為 閾值)
『肆』 數據分析方法有哪些
常用的數據分析方法有:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析。
1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
2、因子分析(Factor Analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。
3、相關分析(Correlation Analysis)
相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數Y對另一個(X)或一組(X1,X2,?,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。
想了解更多關於數據分析的信息,推薦到CDA數據認證中心看看,CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。