⑴ 數字化轉型是什麼
數字化轉型是組織如何為客戶創造價值的一個根本性變革,也是隨著信息技術發展而產生的一種新的經濟形態。在世界范圍內,數字經濟早已成為全球經濟的重要內容,是全球經濟發展的主線,並在逐步推動產業界和全社會的數字化轉型。
數字化轉型包含三個層面:
「變換」——從傳統式的信息內容技術的數字轉變成「新一代IT技術」,並保持技術運用的不斷更新。
「結合」——連通多方位、全行業的數據信息與共享資源,保持信息技術與業務流程管理的真實結合。
「重新構建」——在大數據時代根據數字化的准確性保持精確運營的基本上,加速傳統行業下的設計方案、產品研發、製造、運營、管理方法、商業服務等的轉型與重新構建。
數字化轉型好處
1、充分利用數據數字化有助於打破部門孤島,以便可以統一數據並更輕松地對它進行分析。
2、合並現代數字技術可以改變企業開展業務的方式,有助於簡化其工作流程,並在此過程中減少員工的工作量並減少開銷。
3、更有吸引力的產品和服務了解客戶的需求不僅可以改善客戶體驗,還可以使企業提供客戶所需的產品和服務。它幫助產品設計製造商和零售商選擇庫存,同時使其公司能夠提供更有可能吸引其客戶的服務。
4、節約成本雲技術可以降低IT成本,這只是節省成本的很小一部分。新技術可以幫助公司優化廣泛的業務流程,提供有價值的數據以顯示可以提高效率的地方。
5、創建以客戶為中心的業務數字轉換的主要好處之一是它提供的有關客戶的數據,這些數據使企業能夠改善客戶體驗。從提供個性化產品的網站,到在正確的時間通過正確的渠道和正確的消息發送信息給客戶,數字化轉型使企業能夠給客戶想要的體驗感。
6、精確的市場細分數字化轉型所帶來的技術使他們能夠獲得有關客戶的更多信息,從而幫助企業發現過去從未意識到的新細分市場。
⑵ 大數據所帶來的四種思維方式的轉變
隨著近年來大數據技術的快速發展,大數據所創造的價值深刻改變了我們的生活、工作和思維方式。大數據研究專家舍恩伯格指出,大數據時代,人們對待數據的思維方式會發生如下三個變化:
事實上,大數據時代帶給人們的思維方式的深刻轉變遠不止上述三個方面。大數據思維最關鍵的轉變在於從自然思維轉向智能思維,使得大數據像具有生命力一樣,獲得類似於「人腦」的智能,甚至智慧。
以下將介紹大數據技術所帶來的四種思維方式的轉變。
社會科學研究社會現象的總體特徵,以往的采樣方法一直是主要數據獲取手段,這是人類在無法獲得總體數據信息條件下的無奈選擇。在大數據時代,人們可以獲得與分析更多的數據,甚至是與之相關的所有數據,而不再依賴於采樣,從而可以帶來更全面的認識,可以更清楚地發現樣本無法揭示的細節信息。
在大數據時代,隨著數據收集、處理、存儲、分析技術的突破性發展,我們可以更加方便、快捷、動態地獲得研究對象有關的所有數據,而不再因諸多限制不得不採用樣本研究方法,相應地,思維方式也應該從之前的樣本思維轉向總體性思維,從而能夠更加直觀、全面、立體、系統地認識總體狀況。
在大數據時代之前,由於收集的樣本信息量比較少,所以必須確保記錄下來的數據盡量結構化、精確化,否則,分析得出的結論在推及總體上就會「南轅北轍」的現象,導致數據的准確性大大降低,從而造成分析的結論與實際情況背道而馳,因此,就必須十分注重數據樣本的精確思維。
然而,在大數據時代,得益於大數據技術的突破,大量的結構化、非結構化、異構化的數據能夠得到儲存、處理、計算和分析,這一方面提升了我們從海量數據中獲取知識和洞見的能力,另一方面也對傳統的精確思維造成了挑戰。
在大數據時代,思維方式要從精確思維轉向容錯性思維,當擁有海量即時數據時,絕對的精準不再是追求的主要目標,適當忽略微觀層面上的精確度,容許一定程度的錯誤與混雜,反而可以在宏觀層面擁有更好的知識和洞察力。
在大數據世界未出現時,人們往往執著於現象背後的因果關系,試圖通過有限樣本數據來剖析其中的內在關聯關系。數據量小的另一個缺陷就是有限的樣本數據無法反映出事物之間的普遍性的關聯關系。而在大數據時代,人們可以通過大數據挖掘技術挖掘與分析出事物之間隱蔽的關聯關系,獲得更多的認知與洞見,運用這些認知與洞見就可以幫助我們捕捉現在和預測未來,而建立在關聯關系分析基礎上的預測分析正是大數據的核心議題之一。通過關注線性的關聯關系及復雜的非線性關聯關系,可以幫助人們看到很多以前不曾注意的數據之間存在的某些聯系,還可以掌握以前無法理解的復雜技術和社會動態,關聯性關系甚至可以超越因果關系,成為我們了解這個世界的更好視角。
在大數據時代,思維方式要從因果思維轉向相關思維,努力顛覆千百年來人類形成的傳統思維模式和固有偏見,才能更好地分享大數據帶來的深刻洞見。
不斷提高機器的自動化、智能化水平始終是人類社會長期不懈努力的方向。計算機的出現極大地推動了自動控制、人工智慧和機器學習等新技術的發展,「智能機器人」技術研發也取得了突飛猛進的成果並開始一定應用。應該說,自進入到信息社會以來,人類社會的自動化、智能化水平已得到明顯提升,但始終面臨瓶頸而無法取得突破性進展,機器的思維方式仍屬於線性、簡單、物理的自然思維,智能化水平仍不盡如人意。但是,大數據時代的到來,可以為提升機器智能帶來契機,通過機器學習可以從數據中獲取有價值的學習數據,大數據將有效的推進機器思維方式由自然思維轉向智能化思維,這才是大數據思維轉變的關鍵所在、核心內容。
眾所周知,人腦之所以具有智能、智慧,就在於它能夠對周遭的數據信息進行全面收集、邏輯判斷和歸納總結,獲得有關事物或現象的認識與見解。同樣,在大數據時代,隨著物聯網、雲計算、社會計算、可視技術等的突破發展,大數據系統也能夠自動地搜索所有相關的數據信息,並進而類似「人腦」一樣主動、立體、邏輯地分析數據、做出判斷、提供洞見,那麼,無疑也就具有了類似人類的智能思維能力和預測未來的能力。「智能、智慧」是大數據時代的顯著特徵,大數據時代的思維方式也要求從自然思維轉向智能思維,不斷提升機器或系統的社會計算能力和智能化水平,從而獲得具有洞察力和新價值的東西,甚至類似於人類的「智慧」。
大數據開啟了一個重大的時代轉型。大數據技術正在改變我們傳統的生活以及理解世界的方式,成為新發明和新服務的源泉,而更多的改變正蓄勢待發。大數據時代將帶來深刻的思維轉變,大數據不僅將改變每個人的日常生活和工作方式,改變商業組織和社會組織的運行方式,而且將從根本上奠定國家和社會治理的基礎數據,徹底改變長期以來國家與社會諸多領域存在的「不可治理」狀況,使得國家和社會治理更加透明、有效和智慧。
⑶ 大數據的發展方向都有什麼
說到大數據我們不能不提到人工智慧,這個近幾年非常火的一個新技術方向,從幾年前大家科普什麼是人工智慧到現在產業普遍探討如何落地問題,人工智慧幾乎霸屏各行各業。
大數據時代勢不可擋。 一方面,為了實現降本增效,企業紛紛在尋求數字化、智能化轉型。以期利用新技術帶來結構性增長;;另一方面國家釋放推動「新基建」加速經濟建設信號,對於信息數字化 科技 產業的重視程度空前高漲。企業內部發展剛需和國家政策紅利,人工智慧化必然是新經濟環境下的大勢所趨。
人工智慧的三大核心要素:演算法、算力、數據缺一不可。 其中大數據更像是水電煤般的基礎設施的存在。數據沉澱將變成未來企業搭建壁壘的核心競爭力。而具體來看大數據的發展方向也是涵蓋多個方面,舉例來說:
>> 新零售
新零售的新就在於將「零售數據化」,通過大數據重新定義「人貨場」概念。傳統零售下,通常是「人找貨」,賣場提供什麼樣的商品用戶就只能買到什麼。而在大數據加持下的新零售時代,則是相反的「貨找人」,零售平台將用戶的「數據」和貨的「數據」進行匹配。用戶「數據」例如:用戶的性別、年齡、興趣品類、性格標簽、消費能力、購物頻次、瀏覽時長……等等;貨的「數據」包含了:商品價格、促銷優惠、品類細分、品質、產地、庫存……等等。通過數據賦能、精準匹配,商家能比用戶自己更了解用戶。
>>在線教育
教育的線上化在這次疫情的驅動下變得十分必要,傳統教育一個老師面對多個學生或者一對一的私教,老師的精力無法顧及所有學生,而通過技術手段可以沉澱學生、老師及課程的數據,從而更好地服務好雙邊體驗。例如:AI識別學生上課狀態,是否打瞌睡是否專註上課;智能批改作業,實時反饋學習成績和遺漏知識點;知識點查漏補缺,根據學生個人情況定製測試作業……大數據智能協助提高效率的同時,也減輕人工成本,解放老師「管理」的時間,花更多時間精力備課。
>>直播
直播行業的大數據更是其生存之本,用戶側的「數據」有:內容喜好、觀看時段、瀏覽時長等等,內容側的「數據」有:什麼樣的主播在什麼時段播什麼類型的什麼內容、轉贊評數據等等。有了這樣的雙邊數據後,平台自然可以實現「千人千面」的演算法推薦內容,從而增強用戶對平台的粘度。而直播的最直接的變現手段帶貨,大數據的則能進行智能跳轉,快速結算。
大數據賦能下的行業有著不同的新業態,未來大數據必然會成為產業、生活必不可少的工具,涵蓋我們生活的各個方面,幫我們更便捷高效的生活。
大數據是未來人工智慧領域一項非常重要的基礎。而隨意人工智慧的發展,需要的大數據將會在廣度和深度兩個方向同步擴展。從廣度來看,大數據最終會擴展到 社會 的所有環節;從深度來看,大數據最終會深入到每個人從生到死全過程。
大數據的未來:萬物皆可互聯,世界鮮有隱私!
第一:大數據自身能夠創造出更多的價值。大數據相關技術緊緊圍繞數據價值化展開,數據價值化將開辟出廣大的市場空間,重點在於數據本身將為整個信息化 社會 賦能。隨著大數據的落地應用,大數據的價值將逐漸得到體現。目前在互聯網領域,大數據技術已經得到了較為廣泛的應用。
第二:大數據推動 科技 領域的發展。大數據的發展正在推動 科技 領域的發展進程,大數據的影響不僅僅體現在互聯網領域,也體現在金融、教育、醫療等諸多領域。在人工智慧研發領域,大數據也起到了重要的作用,尤其在機器學習、計算機視覺和自然語言處理等方面,大數據正在成為智能化 社會 的基礎。
第三:大數據產業鏈逐漸形成。經過近些年的發展,大數據已經初步形成了一個較為完整的產業鏈,包括數據採集、整理、傳輸、存儲、分析、呈現和應用,眾多企業開始參與到大數據產業鏈中,並形成了一定的產業規模,相信隨著大數據的不斷發展,相關產業規模會進一步擴大。
第四:產業互聯網將推動大數據落地。當前互聯網正在經歷從消費互聯網向產業互聯網過渡,產業互聯網將利用大數據、物聯網、人工智慧等技術來賦能廣大的傳統產業,可以說產業互聯網的發展空間非常大,而大數據則是產業互聯網發展的一個重點,大數據能否落地到傳統行業,關乎產業互聯網的發展進程,所以在產業互聯網階段,大數據將逐漸落地,也必然落地。
通過以上分析可以得出,未來大數據領域的發展空間還是比較大的,而且目前大數據領域的人才缺口比較大。
大數據的發展趨勢總的來說應該體現在以下幾個方面:
第一:互聯網逐漸大數據化。隨著大數據技術的逐漸成熟,互聯網將成為大數據首先落地的領域,大數據將在電子商務等互聯網應用平台得到廣泛的應用。互聯網 科技 公司也是推動大數據技術發展的中堅力量,在大數據發展的過程中會起到重要的作用,通過大數據技術在互聯網領域的應用也能積累大量的應用經驗。
第二:傳統產業逐漸大數據化。隨著互聯網發展到產業互聯網階段,未來產業互聯網將深入到整個傳統行業中,而大數據技術作為產業互聯網的核心技術之一必然會深入到傳統行業中,所以未來傳統行業大數據化將是一個重要的趨勢。通過大數據相關技術不僅能夠促進傳統行業的信息化建設,包括物聯網、雲計算建設等,更是能夠通過大數據來為傳統行業創新帶來幫助。
第三:人才大數據化。大數據的發展必然需要大量的大數據人才,不僅需要專業的大數據開發人才(大數據平台開發、大數據應用開發、大數據分析、大數據運維等),也需要大量的大數據應用型人才(基於大數據工具開展大數據分析等工作),所以人才大數據化也是未來一個重要的趨勢。對於職場人來說,掌握一定的大數據知識會提升自身的崗位競爭力。
大數據的發展方向我認為…每個人的生活軌跡習慣喜好,每個企業的需求和全方位信息,每個行業的發展方向布局,每個國家的綜合狀態,通過大數據統計分析,做出你所想要的結論!
大數據未來發展趨勢將從以下幾個方面體現:
按需提供的大數據基礎設施一切皆有彈性。基於雲的資料庫和存儲可以根據使用情況雙向伸縮,用戶只需購買和使用其需要的東西。
大數據邊緣計算當數據傳輸變得更快數據量更大時,邊緣計算的智能化可以避免消耗更大的雲存儲空間和遠端基礎設施。
大數據硬體更加商品化
大數據硬體更加廉價,同時越來越多的智能化軟體替代硬體功能。雲時代,硬體越來越廉價。
大數據帶來新的數據結構平面文件和表結構將繼續存在,同時會出現更多的空間數據、圖形和網路數據。
大數據帶來「大分析」
數據的價值決定於數據如何處理。引用舍恩伯格《大數據時代》中的一句話, 大數據帶來的「不是隨機樣本,而是全體數據;不是精確性,而是混雜性;不是因果關系,而是相互關系。」你能獲得的數據量越大,你能挖掘到的價值就越多。
法律檢索大數據是目前發展方向之一。法律 科技 新秀律寶AI大腦,導入最新最全的司法大數據,把人工智慧技術運用在法律檢索、案件信息提取與分析上,律師只需輸入文字或語音識別錄入事情經過或案件事實,系統將會自動進行信息提取和數據匹配,輸出精準的法律檢索結果和詳細的案件分析報告,節省了律師辦案時間。
【大數據檢索】又新又全的司法大數據,輸入關鍵詞即可一鍵檢索獲取法規、案例、工商信息、司法觀點等,方便律師進行檢索。
【類案大數據】律寶能根據律師錄入的案件詳情,通過大數據智能檢索匹配同類型案件和適用法條,給律師提供辦案思路。
1、智慧城市
智慧城市(英語:Smart City)是指利用各種信息技術或創新意念,集成城市的組成系統和服務,以提升資源運用的效率,優化城市管理和服務,以及改善市民生活質量。
用途范圍
用途分為十大智慧體系,分別為:智慧物流體系、智慧製造體系、智慧貿易體系、智慧能源應用體系、智慧公共服務、智慧 社會 管理體系、智慧交通體系、智慧 健康 保障體系、智慧安居服務體系、智慧文化服務體系。
2、增強現實(AR)與虛擬現實(VR)
增強現實技術(Augmented Reality,簡稱 AR),是一種實時地計算攝影機影像的位置及角度並加上相應圖像、視頻、3D模型的技術,這種技術的目標是在屏幕上把虛擬世界套在現實世界並進行互動。這種技術1990年提出。VR是Virtual Reality的縮寫,中文為虛擬現實。虛擬現實技術是一種能夠創建和體驗虛擬世界的計算機模擬技術, 它利用計算機生成一種互動式的三維動態視景,其實體行為的模擬系統能夠使用戶沉浸到該環境中。
3、人工智慧(Artificial Intelligence)
英文縮寫為AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
用途范圍
機器翻譯,智能控制,專家系統,機器人學,語言和圖像理解,遺傳編程機器人工廠,自動程序設計,航天應用,龐大的信息處理,儲存與管理,執行化合生命體無法執行的或復雜或規模龐大的任務等等。
國內外大數據標准化現狀及發展方向
https://www.toutiao.com/i6605430386438701572/
數據工程師、數據分析師、架構設計師 ----------河南新華
⑷ 大數據時代處理數據的三大轉變
大數據時代處理數據的三大轉變
大數據概念的橫空出世,有賴於短短幾年出現的海量數據。據統計,互聯網上的數據每兩年翻一番,而目前世界上90%以上的數據都是最近幾年才產生的。當然,海量數據僅僅是「大數據」概念的一部分,只有具備4個「V」的特徵,大數據的定義才算完整,而價值恰恰是決定大數據未來走向的關鍵。
大數據發展必備三個條件
大數據的發展需要三個必要條件:數據源、數據交易、數據產生價值的過程。近年來,社交網路的興起、物聯網的發展和移動互聯網的普及,誕生了大量有價值的數據源,奠定了大數據發展的基礎。大數據時代到來的重要標志,則是大批專業級「數據買賣商」的出現,以及圍繞數據交易形成的,貫穿於收集、整理、分析、應用整個流程的產業鏈條。大數據發展的核心,則是使用戶從海量的非結構化數據和半結構化數據中獲得了新的價值,數據價值是帶動數據交易的原動力。
IBM、甲骨文、SAP近年紛紛斥巨資收購數據管理和分析公司,在這些互聯網巨頭的帶動下,數據分析技術日漸成熟。2013年6月,愛德華·斯諾登將「棱鏡計劃」公之於眾,「棱鏡門」事件一方面說明大數據技術已經成熟;另一方面也佐證了現在阻礙大數據發展的不是技術,而是數據交易和數據價值。
大數據技術的發展促進了雲計算的落地,雲計算的部署完成又反過來加大了市場對數據創造價值的期待。大數據概念提出之後,市場終於看到了雲計算的獲利方向:各地的一級系統集成商與當地政府合作,建雲數據中心;各大行業巨頭在搭建各自行業的雲平台;IT巨頭想盡辦法申請中國的公有雲牌照。大數據促成了雲計算從概念到落地。藉助於智慧城市概念的普及,雲計算基礎設施已基本准備就緒,一方面完成了大數據應用的硬體基礎;另一方面迫於回收雲計算投資的壓力,市場急需應用部署,大數據恰如雪中送炭,被市場寄予厚望。
現在,問題的核心指向了「數據如何創造價值?」
整合與開放是基石
大數據服務創業公司Connotate對800多名商業和IT主管進行了調查。結果顯示,60%受調查者稱:「目前就說這些大數據投資項目肯定能夠帶來良好回報尚為時過早。」之所以如此,是由於當前大數據缺乏必需的開放性:數據掌握在不同的部門和企業手中,而這些部門和企業並不願意分享數據。大數據是通過研究數據的相關性來發現客觀規律,這依賴於數據的真實性和廣泛性,數據如何做到共享和開放,這是當前大數據發展的軟肋和需要解決的大問題。
2012年美國大選,奧巴馬因數據整合而受益。在奧巴馬的競選團隊中有一個神秘的數據挖掘團隊,他們通過對海量數據進行挖掘幫助奧巴馬籌集到10億美元資金;他們通過數據挖掘使競選廣告投放效率提升了14%;他們通過製作「搖擺州」選民的詳細模型,每晚實施6.6萬次模擬選舉,推算奧巴馬在「搖擺州」的勝率,並以此來指導資源分配。奧巴馬競選團隊相比羅姆尼競選團隊最有優勢的地方:對大數據的整合。奧巴馬的數據挖掘團隊也意識到這個全世界共同的問題:數據分散在過多的資料庫中。因此,在前18個月,奧巴馬競選團隊就創建了一個單一的龐大數據系統,可以將來自民意調查者、捐資者、現場工作人員、消費者資料庫、社交媒體,以及「搖擺州」主要的民主黨投票人的信息整合在一起,不僅能告訴競選團隊如何發現選民並獲得他們的注意,還幫助數據處理團隊預測哪些類型的人有可能被某種特定的事情所說服。正如競選總指揮吉姆·梅西納所說,在整個競選活中,沒有數據做支撐的假設很少存在。
2012年3月,美國奧巴馬政府宣布投資2億美元啟動「大數據研究和發展計劃」,將「大數據研究」上升為國家意志。一個國家擁有數據的規模和運用數據的能力將成為綜合國力的重要組成部分。國內智慧城市建設目標之一就是實現數據的集中共享。
合作共贏的商業模式
隨著雲計算、大數據技術和相關商業環境的不斷成熟,越來越多的「軟體開發者」正在利用跨行業的大數據平台,打造創新價值的大數據應用,而且這一門檻正在不斷降低。因為首先,數據擁有者能夠以微乎其微的成本獲取額外的收入,提高利潤水平;其次,大數據設備廠商需要應用來吸引消費者購買設備,發展合作共贏的夥伴關系勢必比單純銷售設備要有利可圖,一些具有遠見的廠商已經開始通過提供資金、技術支持、入股等方式來扶持這些「軟體開發者」;第三,行業細分市場的數據分析應用需求在不斷加大,對於整個大數據產業鏈來說,創新型的行業數據應用開發者必將是未來整個大數據產業鏈中最為活躍的部分。
未來,有三種企業將在」大數據產業鏈「中處於重要地位:掌握海量有效數據的企業,有著強大數據分析能力的企業,以及創新的「軟體開發者」。社交網路、移動互聯網、信息化企業、電信運營商都是海量數據的製造者,Facebook公司手中掌握著8.5億用戶,淘寶注冊用戶超過3.7億,騰訊的微信用戶突破3億,這些龐大用戶群所提供的數據,正在等待時機釋放出巨大商業能量。可以預測,在不久的將來,Facebook、騰訊、電信運營商等海量數據持有者或者自我延伸成為數據分析提供商,或者與IBM、ZTE等企業密切對接成為上下游合作企業,大數據產業鏈將在某個爆發時點到來之際,以令人驚訝的速度成長壯大。
警惕大數據的危害
大數據時代,傳統的隨機抽樣被「所有數據的匯攏」所取代,人們的思維決斷模式,已可直接根據「是什麼」來下結論,由於這樣的結論剔除了個人情緒、心理動機、抽樣精確性等因素的干擾,因此將更精確、更有預見性。不過,由於大數據過於依靠數據的匯集,一旦數據本身有問題,就很可能出現「災難性大數據」,即因為數據本身的問題,而導致錯誤的預測和決策。
大數據的理論是「在稻草堆里找一根針」,而如果「所有稻草看上去都挺像那根針」呢?過多但無法辨析真偽和價值的信息和過少的信息一樣,對於需要作出瞬間判斷、一旦判斷出錯就很可能造成嚴重後果的情況而言,同樣是一種危害。「大數據」理論是建立在「海量數據都是事實」的基礎上,而如果數據提供者造假呢?這在大數據時代變得更有害,因為人們無法控制數據提供者和搜集者本人的偏見。擁有最完善資料庫、最先接受「大數據」理念的華爾街投行和歐美大評級機構,卻每每在重大問題上判斷出錯,這本身就揭示了「大數據」的局限性。
不僅如此,大數據時代造就了一個資料庫無所不在的世界,數據監管部門面臨前所未有的壓力和責任:如何避免數據泄露對國家利益、公眾利益、個人隱私造成傷害?如何避免信息不對等,對困難群體的利益構成傷害?在有效控制風險之前,也許還是讓「大數據」繼續待在籠子里更好一些。
大數據的經濟價值已經被人們認可,大數據的技術也已經逐漸成熟,一旦完成數據的整合和監管,大數據爆發的時代即將到來。我們現在要做的,就是選好自己的方向,為迎接大數據的到來,提前做好准備。
⑸ 大數據賦能業務創新的5個階段
有粉絲在後台咨詢大數據如何賦能業務,我從近幾年從事大數據相關的業務總結了一下5點,希望能幫助大家。
1.業務監控: 收集用戶數據、產品數據、運營數據等,形成回顧性的報告或者報表,以業務監控為手段看業務的最新進展、異常報警。這是業務賦能的最初始階段,往往很多企業只是因為有了dashboard或者業務報表而沾沾自喜,覺得自己公司進入了大數據時代,實則這只是數據化轉型的開始。
2.業務洞察: 根據數據分析結論,對潛在客群,產品運營進行洞察,根據已有數據對業務結果、用戶行為進行預測。這個階段就需要業務和數據的同事進行密切配合,從數據的趨勢以及數據的異常,找到能夠策略優化的點,進而對未來的業務進行優化改進。
3.業務優化: 根據分析結果,優化關鍵業務節點和流程引擎,在每個交易節點上降低成本、提升效率。這涉及由點到面進行數據的洞察,即比第二階段站在更高的角度看整條業務發展的鏈條,尤其能在價值鏈上找到關鍵問題,並能進行行之有效的優化,提升收入。
4.洞察變現: 根據對用戶、產品、運營的洞察,尋找到用戶變現、產品變現以及渠道變現的機會,創造新的收入。
5.業務轉型: 通過數字化的經營,找到業務發展的第二曲線,實現業務轉型,並建立起一套擁抱創新的企業氛圍。
⑹ 大數據時代的五個轉變
大數據時代的五個轉變
互聯網的重心逐步向著移動互聯轉移,各種新型智能移動設備的迅速普及帶來海量數據的爆發。於是大家都在談論大數據,大家都想用好大數據。但你真的了解大數據嗎?當前的行業狀況又是怎樣?
事實上,大數據只是一種提法,其形態本身是數據雲。正如 DCCI 創始人胡延平所說,以實時感知、分析、對話、服務能力為基礎,讓數據流成為商業、營銷活動的核心才是關鍵。怎樣才能讓這些大數據更好地為產品或營銷服務,搞清楚大數據時代的業界生態必不可少。
DCCI 互聯網數據中心在今天的 Adworld2012 互動營銷大會上總結了這樣幾個轉變,我們可以結合其發布的數據報告一起來看看。
以人為中心,互聯網生態結構發生轉變截止 2012年6月,中國有網民 5.38 億,其中手機網民達到 3.88 億。同時關於三大移動智能操作系統,我們還得到這樣一組數據:
大量智能移動設備接入網路,移動應用爆發性增長對數據進行深入挖掘的需求突顯。而移動互聯網與傳統互聯網融合,成為所有媒體的核心節點卻是大數據實現的前提。
數據流量劇增,Web Analytics 產業曙光出現我們再來看看另一組數據:
如此龐大的數據,哪些具有商業價值?怎樣挖掘出這些有價值的數據?事實上在大數據中,存儲在資料庫中的結構化數據僅占 10%,郵件、視頻、微博、帖子、頁面點擊等大量非結構化數據占據了另外 90%。怎樣從這些與用戶行為相關的大數據中挖掘出更多有價值的內容,值得創業者思考和探索,同時也給數據分析與挖掘產業帶來更多的機會。
數據不是數據存儲,而是數據應用
從傳統互聯網到移動互聯網,人們產生的數據越來越多。同時 Google Glass 的誕生讓我們有理由相信,未來每個人都將產生更多的數據。但如果僅僅是簡單地將這些數據存儲起來,它本身並不具有任何價值。
基於用戶行為分析,互聯網營銷趨向 開放-主動-整合正如前面所說,數據結構更加多樣化,圖像、視頻和文檔的比例佔了半壁江山。有數據顯示每年諸如郵件、視頻、微博、帖子、手機呼叫、網頁點擊等類型的非結構化數據增長率達到 80%。大量的用戶行為信息記錄在這些數據中,互聯網營銷將在行為分析的基礎上,向個性化時代過渡。
RTB-DSP-DMP,Ad-Exchange 發展提速,向營銷雲轉變
RTB 即為 「人群實時競價」,是近年興起於美國的網路廣告交易模式。該模式一經出現便在全球被大范圍採用,目前歐美數字廣告發行商中有 2/3 使用 RTB 模式。同時 Google DoubleClick 高管認為,到 2015年 將有 50%以上的展示廣告通過 RTB 模式完成。
DCCI 提供的數據顯示,中國有超過 230 萬個網站,網頁超 866 億,移動應用超過 135 萬。由此可以預見,國內網路廣投放也將從傳統面向群體的營銷轉向個性化營銷,從流量購買轉向人群購買。也就是說,未來的市場將更多地以人為中心,主動迎合用戶需求。
以上是小編為大家分享的關於大數據時代的五個轉變的相關內容,更多信息可以關注環球青藤分享更多干貨
⑺ 大數據時代的治理轉型
大數據時代的治理轉型
大數據技術在商業領域已經顯示出提供「解決方案」的驚人能力,同樣可以在國家治理、政府治理、社會治理中運用
國務院通過的《關於促進大數據發展的行動綱要》為未來中國的大數據發展指明了方向。然而,與全球主要發達國家相比,中國仍處於大數據發展的初級階段。如何構築大數據時代的國家競爭發展優勢將具有深遠的戰略意義。
大數據時代的國際競爭格局
當前,大數據正煥發出變革的力量,並正在改變各國綜合國力增速,重塑未來國際戰略格局,主要表現在以下方面。
首先,大數據成為經濟社會發展新的驅動力。隨著物聯網、雲計算、移動互聯網等網路新技術的應用和發展,社會信息化進程進入數據時代,海量數據的產生與流轉成為常態。未來20年,全球50億人將實現聯網,這將使全球數據量呈幾何式快速增長。預計到2020年,全球數據使用量將達到約40ZB(1ZB=10億TB),將成為新的重要驅動力。
其次,大數據將成為重要的戰略資源和核心資產。世界各國對數據的依賴快速上升,國家競爭焦點已經從資本、土地、人口、資源的爭奪轉向了對大數據的爭奪,制信(數)權成為繼制陸權、制海權、制空權之後的新制權。大數據使得數據強國與數據弱國的區分不再以經濟規模和經濟實力論英雄,而是決定於一國大數據能力的優劣。
第三,大數據將改變國家治理的架構和模式。大數據不僅是一場技術和經濟革命,更是一場國家治理的變革。大數據可以通過對海量、動態、高增長、多元化、多樣化數據的高速處理,快速獲得有價值信息,提高公共決策能力。另外,數據主權的提出也使政府、企業和個人的角色發生轉變,使國家治理結構逐步實現從國家獨大的治理結構轉向多元共治,從封閉性治理結構轉向開放性結構,從政府配置資源模式轉向市場配置資源模式的轉變,作為基礎設施的大數據和作為基礎性制度的大數據同時存在。
最後,大數據安全已經成為國家最重要的戰略安全之一。藉助大數據革命,美國等發達國家全球數據監控能力升級,確保自身在網路空間和數據空間的主導地位。各種國家信息基礎設施和重要機構所承載著的龐大數據信息,如由信息網絡系統所控制的石油和天然氣管道、水、電力、交通、銀行、金融、商業和軍事等,都有可能成為被攻擊的目標,大數據安全已經上升成為國家安全極為關鍵的組成部分。
主要國家大數據戰略在行動
當前,世界各國紛紛利用大數據提升國家競爭能力和戰略能力。
1.美國大數據戰略的全球領導力。美國政府最先對大數據技術革命做出戰略反應,利用大數據提升國家治理水平和國家競爭優勢。迄今為止,美國政府在大數據方面實施了三輪政策行動。
第一輪是2012年3月,白宮發布《大數據研究和發展計劃》,並成立「大數據高級指導小組」,該計劃有兩個目標:一是用大數據技術系統改造傳統國家治理手段和治理體系;二是形成新的經濟增長業態和板塊。
第二輪是2013年11月,白宮推出「數據-知識-行動」(Data to Knowledge to Action)計劃,進一步細化了利用大數據改造國家治理、促進前沿創新、提振經濟增長的路徑。這是美國向數字治國、數字經濟、數字城市、數字國防轉型的重要舉措。
第三輪是2014年5月,美國總統辦公室提交《大數據:把握機遇,維護價值》政策報告,強調政府部門和私人部門緊密合作,利用大數據最大限度地促進增長和利益,減少風險。
2.歐盟「數據驅動經濟戰略」框架初顯。歐盟在2014年發布了《數據驅動經濟戰略》,有望近期內成為歐盟經濟單列行業,為歐盟恢復經濟增長和擴大就業,做出巨大貢獻。歐盟在大數據方面的活動主要涉及兩方面內容:(1)研究數據價值鏈戰略計劃;(2)資助「大數據」和「開放數據」領域的研究和創新活動。數據價值鏈戰略計劃包括開放數據、雲計算、高性能計算和科學知識開放獲取四大戰略。主要原則是:高質量數據的廣泛獲得性,包括公共資助數據的免費獲得;作為數字化單一市場的一部分,歐盟內的數據自由流動;尋求個人潛在隱私問題與其數據再利用潛力之間的適當平衡,同時賦予公民以其希望形式使用自己數據的權利。
3.亞太地區國家紛紛搶佔大數據戰略制高點。亞洲一些國家在大數據發展中緊追其後。日本積極謀劃利用大數據改造國家治理體系,對沖經濟下行風險。2013年6月,安倍內閣正式公布新IT戰略《創建最尖端IT國家宣言》,以開放大數據為核心的IT國家戰略,把大數據和雲計算衍生出的新興產業群視為提振經濟增長、優化國家治理的重要抓手。
韓國科學技術政策研究院2011年正式提出「大數據中心戰略」以及「構建英特爾綜合資料庫」。同時,韓國社會專職部門制定應對大數據時代計劃。2012年,韓國國家科學技術委員會就大數據未來發展環境發布重要戰略規劃。2013年,在朴槿惠總統「創意經濟」的新國家發展戰略指引下,韓國未來創造科學部提出「培養大數據、雲計算系統相關企業1000個」的國家級大數據發展計劃以及《第五次國家信息化基本計劃(2013-2017)》等多項大數據發展戰略。
總體來看,國外政府大數據政策措施體現出如下明顯特徵:一是頒布戰略規劃進行整體布局,搶佔大數據先機;二是注重構建配套政策,包括人才培養、產業扶持、資金保障、數據開放共享等,為本國大數據發展構築良好的生態環境。
中國准備好了嗎
大數據對於中國的戰略意義毋庸置疑。2013年,中國大數據產業市場規模為34.3億元,同比增長率超100%。然而,與國外先進國家相比,中國大數據發展卻面臨非常嚴峻的風險與挑戰。
1.大數據戰略儲備能力不足,尚缺乏國家頂層設計。從主要發達國家的大數據發展經驗看,美國等國持續強化國家戰略的頂層設計,重點關注大數據對創新能力、國家安全能力、產業競爭力等國家競爭優勢的重構,持續推出大數據國家戰略規劃。目前,中國明確大數據發展戰略的中央部門和政府部門較少,更多是產業界和學術界的探討,大數據戰略的國家頂層設計尚未進入議事日程。此外,大數據治理不是技術問題,而是具有系統性、全局性的戰略問題,需要有全面推動大數據戰略實施的權力部門和核心決策機構。而這些機制設計,中國都明顯缺失和缺位。
2.條塊分割體制壁壘和「信息孤島」,阻礙數據開放和共享。據統計,中國政府掌握著80%以上的數據,政府作為政務信息的採集者、管理者和佔有者,具有其他社會組織不可比擬的信息優勢。但由於信息技術、條塊分割的體制等限制,各級政府部門之間的信息網路往往自成體系、相互割裂,相互之間的數據難以實現互通共享,導致目前政府掌握的數據大都處於割裂和休眠狀態。同時,由於政府部門業務管理信息系統開發和建設的「部門化」,政府信息系統出現「系統林立」和分裂狀態,政府公共信息資源重復採集現象嚴重,信息摩擦和治理成本偏高。總體而言,政府開放數據的程度遠遠落後於世界領先國家。
3.傳統治理思維和治理體制在大數據時代出現明顯的不適應,並引發新的難題。大數據正在重構政府、市場、社會三者之間關系模式,然而,現有國家治理思維和治理體制已經明顯不適應這種大數據時代新趨勢的變化。特別是如果經濟體制、行政體制和社會管理體制改革不能有效跟進,既得利益主體很可能將大數據技術帶來的國家治理契機轉化為既得利益的手段和工具,可能引發新的「權力尋租」、新的「數字鴻溝」等問題。
4.法治建設滯後,維護「數據主權」的法律法規標准及配套政策嚴重缺失。目前,中國大數據法治建設明顯滯後,用於規范、界定「數據主權」的相關法律缺失,缺乏有效的大數據法律框架。
一是對於政府、商業組織和社會機構的數據開放、信息公開的相關法律法規尚待進一步完善,尤其缺乏企業和應用程序中關於搜集、存儲、分析、應用數據的相關法規。
二是沒有對保護本國數據、限制數據跨境流通等做出明確規定。金融、證券、保險等重要行業在華開展業務的外國企業將大量敏感數據傳輸、存儲至其國外的數據中心,存在不可控風險。
三是大數據技術應用與產業發展剛剛起步,缺乏與之相配套的法律法規及政策。
將大數據發展規劃上升為全面的國家戰略
大數據引發的經濟社會革命才剛剛開始,需要全面提升大數據在國家經濟發展和治理方面的重要戰略地位。
1.完善大數據發展的國家頂層設計。要在「行動綱要」基礎上,加快形成大數據國家戰略,包括中長期路線圖與實施重點、目標、路徑。統籌布局,加快大數據發展核心技術研發;推進大數據開放、共享以及安全方面的相關立法與標准制定;搶抓全球科技革命和產業革命戰略機遇,重構國家綜合競爭優勢。
一是把數據主權納入國家核心利益的戰略范疇,加快大數據立法、法律法規和標準的制定。
二是規劃重點領域的大數據研究計劃,布局關鍵技術研發方向,強化大數據基礎設施建設和人才培養,加強對大數據產業的扶持,做好體制機制、資金、法規標准等方面的保障,為後期專項政策制定、項目規劃等提供依據。
三是借鑒國外政府大數據戰略經驗,制定符合中國國情的大數據配套政策路線圖,注重從戰略技術能力儲備和戰略應用實施兩個角度,釋放大數據發展的潛能。
2.構建國家大數據倉庫。應加快G2G(政府與政府之間)、G2B(政府與企業之間)、G2C(政府與公民之間)的大數據開放與共享,盤活大數據資產。
一是加強大數據基礎設施建設。全面推進實施「寬頻中國」戰略,持續支持下一代互聯網、第四代移動通信、公共無線網路、電子政務網、行業專網和物聯網等網路基礎設施建設,建立政府「雲平台」,統籌監測數據管理平台、公眾民情採集與服務數據管理平台、公共安全與應急管理數據管理平台、政府管理績效考評數據管理平台、資源統籌與經濟預警監測數據管理平台。
二是加強基礎數據整合。一方面,整合來自於政府職能部門及業務部門的數據信息資源,推動和規范誠信機構建設,提供完整、准確、及時的企業和個人誠信信息,推進大數據徵信體系建設;另一方面,推動國家基礎數據開放共享進程,打造透明、智慧政府,推動國家、省、市、縣四級大數據交換共享,打通信息橫向和縱向的共享渠道,推進跨地區、跨部門信息資源共享和業務協同,並在此基礎上最終建成國家大數據倉庫。
3.運用大數據,全面提升公共服務水平。從全球領先國家經驗看,社會治理體系和公共服務體系是運用大數據進行改造提升的最有潛力領域。
一是將大數據更廣泛實踐於污染防治、城市規劃、交通、醫療健康、教育、國家安全、社會輿情、軍事等重要領域,在智能交通、智慧醫療、智慧教育、智慧軍工、國防等方面實現重大模式創新。
二是利用大數據加快政府自身革命,制定政府大數據開發與利用的負面清單、權力清單和責任清單。
三是利用大數據實施監管和反腐。大數據給網路問政、網路監督和技術反腐提供了強大的技術支撐,可以利用大數據建立國民滿意度指數、腐敗指數以及清廉指數等。
4.利用大數據創新政府決策方案。大數據技術在商業領域已經顯示出提供「解決方案」的驚人能力,同樣可以在國家治理、政府治理、社會治理方面中運用。以通信網、互聯網、移動互聯網、物聯網四張網為支撐,可以提出大數據智慧城市解決方案、大數據新農村建設解決方案、大數據金融解決方案、大數據智能終端解決方案、大數據位置服務解決方案、大數據教育解決方案、大數據文化創意解決方案、大數據環境解決方案、大數據製造解決方案、大數據生物健康解決方案、大數據中小企業數據中心解決方案、大數據服務平台解決方案、大數據信息安全解決方案等,為大數據戰略真正落地找到突破口。
5.充分挖掘釋放大數據變革、創新經濟的潛能。首先,通過大數據實現製造業數字化、智能化及下一代信息技術的深度融合。要做好大數據與工業寬頻建設的對接,率先將工業寬頻的傳輸、工業大數據採集、數據中心的計算應用等環節整合起來,建立完善的工業互聯網體系和中國的工業4.0體系。
其次,鑒於目前中國的人口要素紅利在「退潮」,土地、資源、環境等生產要素日益緊張,要將大數據作為新的戰略性生產要素釋放出來,建立多元參與的協同創新聯盟,增強產學研合作集成研發能力,激勵基於大數據資源的創新創業,推動經濟實現高質量增長。
再次,利用大數據研判,預測宏觀經濟形勢,開發「經濟增長形勢判斷預測系統」、「物價變化高頻判斷系統」、「金融市場信心判斷系統」、「房地產景氣判斷系統」等,增強對經濟形勢判斷的科學性、精準性。
6.開展全球大數據交流合作。全球主要國家都已提出本國大數據國家戰略,特別是美國、日本等國的數據量非常龐大。中國可通過大數據外交,與之展開國際合作,特別是在應對氣候變化、糧食安全、疾病災害、恐怖主義等領域,以及在「一帶一路」戰略推進過程中,豐富公共外交領域的大數據建設。
此外,可利用大數據技術掌握全球性數據情報和全球焦點事件發展態勢。建議實施中國版「全球脈動」(Global Pusle)項目。聯合國於2009年推出「全球脈動」項目,提出大數據是納米技術和量子計算之後的一個顛覆性變化,用這個技術對Twitter和Facebook等互聯網數據和文本信息開展實時分析監測,使用語言解密軟體對互聯網世界進行「情緒分析」,可以對疾病、動亂、種族沖突提供早期預警。中國可以實施類似的大數據全球情報智能監測項目,對全球重大趨勢進行早期預警,切實維護和保障國家安全。