① 什麼是回歸分析主要內容是什麼
在統計學中,回歸分析(regression analysis)指的是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
拓展資料
在大數據分析中,回歸分析是一種預測性的建模技術,它研究的是因變數(目標)和自變數(預測器)之間的關系。這種技術通常用於預測分析,時間序列模型以及發現變數之間的因果關系。例如,司機的魯莽駕駛與道路交通事故數量之間的關系,最好的研究方法就是回歸。
方法
有各種各樣的回歸技術用於預測。這些技術主要有三個度量(自變數的個數,因變數的類型以及回歸線的形狀)。
1. Linear Regression線性回歸
它是最為人熟知的建模技術之一。線性回歸通常是人們在學習預測模型時首選的技術之一。在這種技術中,因變數是連續的,自變數可以是連續的也可以是離散的,回歸線的性質是線性的。
線性回歸使用最佳的擬合直線(也就是回歸線)在因變數(Y)和一個或多個自變數(X)之間建立一種關系。
多元線性回歸可表示為Y=a+b1*X +b2*X2+ e,其中a表示截距,b表示直線的斜率,e是誤差項。多元線性回歸可以根據給定的預測變數(s)來預測目標變數的值。
2.Logistic Regression邏輯回歸
邏輯回歸是用來計算「事件=Success」和「事件=Failure」的概率。當因變數的類型屬於二元(1 / 0,真/假,是/否)變數時,應該使用邏輯回歸。這里,Y的值為0或1,它可以用下方程表示。
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk
上述式子中,p表述具有某個特徵的概率。你應該會問這樣一個問題:「為什麼要在公式中使用對數log呢?」。
因為在這里使用的是的二項分布(因變數),需要選擇一個對於這個分布最佳的連結函數。它就是Logit函數。在上述方程中,通過觀測樣本的極大似然估計值來選擇參數,而不是最小化平方和誤差(如在普通回歸使用的)。
3. Polynomial Regression多項式回歸
對於一個回歸方程,如果自變數的指數大於1,那麼它就是多項式回歸方程。如下方程所示:
y=a+b*x^2
在這種回歸技術中,最佳擬合線不是直線。而是一個用於擬合數據點的曲線。
4. Stepwise Regression逐步回歸
在處理多個自變數時,可以使用這種形式的回歸。在這種技術中,自變數的選擇是在一個自動的過程中完成的,其中包括非人為操作。
② 線性回歸和線性相關分析對數據有什麼要求
線性相關分析的數據要求:
可以是連續性數據,也可以是分類數據。
線性回歸分析的數據要求:
自變數可以是分類變數和連續性變數,因變數必須是連續性變數。
分類變數:比如性別民族學歷等,數據之間無法進行加減的。
連續變數:比如身高體重收入溫度等,這種有具體意義的數據,可以進行平均和加減的。
(2)什麼樣的數據用作回歸分析擴展閱讀:
在線性回歸中,數據使用線性預測函數來建模,並且未知的模型參數也是通過數據來估計。這些模型被叫做線性模型。最常用的線性回歸建模是給定X值的y的條件均值是X的仿射函數。
不太一般的情況,線性回歸模型可以是一個中位數或一些其他的給定X的條件下y的條件分布的分位數作為X的線性函數表示。像所有形式的回歸分析一樣,線性回歸也把焦點放在給定X值的y的條件概率分布,而不是X和y的聯合概率分布(多元分析領域)。
③ 如何確定應該使用哪種回歸分析方法
回歸有很多種,回歸研究X對於Y的影響,至於回歸方法的選擇上,關鍵在於因變數Y的數據類型,如果Y是離散數據,則統一應該使用logistic回歸,但具體logistic回歸又分成三種類型。
④ 什麼樣的數據適合做回歸分析用SPSS軟體
用於分析二組數據是否存在關聯性,或關聯性的程度是多少的時候用回歸分析。
比如:化肥的用量與產量的關系。
化肥用量 產量
1KG/畝 100KG
2KG/畝 150KG
3KG/畝 200KG
可以分析一下用量與產量是否存在關聯