㈠ 數據分析行業的發展前景預測
也許未來十年會發生什麼,我們很難有一個精確的描述,但我們卻能通過一些數據和一些技術手段,了解未來十年的發展趨勢。回顧過去,從90年代起,技術領域變革都深深地影響了我們普通人的生活,數據引領並推動著世界發展。無論是過去20年間,IDC預測的新創建數據量的飛速增長,亦或是過去10年間,新數據量的成倍遞增,都足以說明,人工智慧和數據統計分析將在未來10年,繼續突破界限、推動創新和變革,為人類社會的發展帶來機遇和挑戰。下面小編就和大家來說說數據分析行業的發展前景預測,一起來看看吧!
㈡ 怎麼寫市場前景分析
對新產品的市場前景分析,不能叫做「可行性分析」,應該叫作「新產品投放市場效果預估」,如果是未投產的新項目,應該叫作「新項目投產可行性分析」。
對市場前景的預測判斷主要有以下幾個因素:
一、目前同類產品在市場的狀況,包括品牌、質量、價位、產品附加值等。
二、目前同類產品市場競爭情況分析,主要評估目前的競爭水平和市場空間。
三、我公司產品的性價比、市場營銷手段、產品綜合優勢和市場同類產品的對比。
四、從上述三點評估得出兩個結論:一是我公司產品在目前市場競爭環境下的生存空間;二是我公司產品通過什麼營銷方式可以提升市場佔有率。
㈢ 分析一個行業前景需要考慮哪些因素
從目前國民經濟發展的總體態勢和機械工業的增長潛力看,機械工業發展既面臨挑,又有許多機遇。據分析,主要行業走勢大體如下: 農機行業:由於國家繼續加強對農業的投入和農產品收購的順價政策實行,預計大型農機產品生產降幅將明顯降低,農業運輸機械將保持適度增長,一些小型、專用農機具市場需求將保持平穩。但受農民收入增長減慢和收入分流等因素的影響,預計農機生產低速增長的狀態不可能扭轉。 工程機械行業:預計隨著國家對鐵道、公路、機場、碼頭和城市公用基礎設施等項目投資力度的加強,國內市場對工程機械產品的市場需求會有所改善。雖然今年企業生產漲幅會比去年有所降低,但全年工程機械行業仍將保持適度增長。 儀器儀錶行業:從目前主要儀表產品的發展前景看,預計投資類儀表的市場需求會有所好轉,受住房制度改革的推動,預計各種水表、電表需求將逐漸趨穩,光學儀器和消費類儀表將能夠繼續保持目前的增長態勢,全年生產增長將在5%左右。 石化通用行業:由於石油化工通用設備行業的產品多系量大面廣的輔機製造,盡管今年以來這個行業生產增幅逐月回落,但與其它機械製造行業比仍是基本適度的。從主要產品情況看,受海上石油發展的影響,石油鑽采、煉油化工設備保持一定增長;氣體壓縮機、高中壓閥門生產與化肥行業生產不景氣有關,降幅都較大。從目前相關行業發展前景看,今後石化通用行業情況會有轉機,生產增長會有所恢復,尤其是國家加大對年產30萬噸及以上合成氨、48萬噸及以上尿素、30萬噸及以上乙烯成套設備等的技術改造會促進需求的平穩增長。 電工電器行業:從目前電工行業經濟運行狀況看,行業經濟形勢將進一步趨好,尤其是國家決定新建電廠和改造老廠所需的60萬千瓦以下的火電機組將採用國產設備。加強中低壓凝汽式機組、老機組和重點主力機組,3年內停運和報廢1000萬千瓦中低壓小火電機組。集中資金加快電網特別是城市電網和農村電網的建設與改造等措施,無疑會促進電工行業的發展。同時,也應看到,由於電工行業一些大型主機廠資金供應受三角債困擾特別嚴重,這對下一步電工企業的正常生產運行會造成不利影響。
㈣ 從三個方向去預測大數據發展的未來趨勢
從三個方向去預測大數據發展的未來趨勢
技術的發展,讓這個世界每天都在源源不斷地產生數據,隨著大數據概念被提出,這個技術逐漸發展成為一個行業,並被不斷看好。那麼大數據行業的未來發展如何?三個方向預測大數據技術發展未來趨勢:
(一)社交網路和物聯網技術拓展了數據採集技術渠道
經過行業信息化建設,醫療、交通、金融等領域已經積累了許多內部數據,構成大數據資源的「存量」;而移動互聯網和物聯網的發展,大大豐富了大數據的採集渠道,來自外部社交網路、可穿戴設備、車聯網、物聯網及政府公開信息平台的數據將成為大數據增量數據資源的主體。當前,移動互聯網的深度普及,為大數據應用提供了豐富的數據源。
另外,快速發展的物聯網,也將成為越來越重要的大數據資源提供者。相對於現有互聯網數據雜亂無章和價值密度低的特點,通過可穿戴、車聯網等多種數據採集終端,定向採集的數據資源更具利用價值。例如,智能化的可穿戴設備經過幾年的發展,智能手環、腕帶、手錶等可穿戴正在走向成熟,智能鑰匙扣、自行車、筷子等設備層出窮,國外 Intel、Google、Facebook,國內網路、京東、小米等有所布局。
企業內部數據仍是大數據主要來源,但對外部數據的需求日益強烈。當前,有 32%的企業通過外部購買所獲得的數據;只有18%的企業使用政府開放數據。如何促進大數據資源建設,提高數據質量,推動跨界融合流通,是推動大數據應用進一步發展的關鍵問題之一。
總體來看,各行業都在致力於在用好存量資源的基礎之上,積極拓展新興數據收集的技術渠道,開發增量資源。社交媒體、物聯網等大大豐富了數據採集的潛在渠道,理論上,數據獲取將變得越來越容易。
(二) 分布式存儲和計算技術夯實了大數據處理的技術基礎
大數據存儲和計算技術是整個大數據系統的基礎。
在存儲方面,2000 年左右谷歌等提出的文件系統(GFS)、以及隨後的 Hadoop 的分布式文件系統 HDFS(Hadoop Distributed File System)奠定了大數據存儲技術的基礎。
與傳統系統相比,GFS/HDFS 將計算和存儲節點在物理上結合在一起,從而避免在數據密集計算中易形成的 I/O吞吐量的制約,同時這類分布式存儲系統的文件系統也採用了分布式架構,能達到較高的並發訪問能力。
在計算方面,谷歌在 2004 年公開的 MapRece 分布式並行計算技術,是新型分布式計算技術的代表。一個 MapRece 系統由廉價的通用伺服器構成,通過添加伺服器節點可線性擴展系統的總處理能力(Scale Out),在成本和可擴展性上都有巨大的優勢。
(三) 深度神經網路等新興技術開辟大數據分析技術的新時代
大數據數據分析技術,一般分為聯機分析處理(OLAP,OnlineAnalytical Processing)和數據挖掘(Data Mining)兩大類。
OLAP技術,一般基於用戶的一系列假設,在多維數據集上進行互動式的數據集查詢、關聯等操作(一般使用 SQL 語句)來驗證這些假設,代表了演繹推理的思想方法。
數據挖掘技術,一般是在海量數據中主動尋找模型,自動發展隱藏在數據中的模式(Pattern),代表了歸納的思想方法。
傳統的數據挖掘演算法主要有:
(1)聚類,又稱群分析,是研究(樣品或指標)分類問題的一種統計分析方法,針對數據的相似性和差異性將一組數據分為幾個類別。屬於同一類別的數據間的相似性很大,但不同類別之間數據的相似性很小,跨類的數據關聯性很低。企業通過使用聚類分析演算法可以進行客戶分群,在不明確客戶群行為特徵的情況下對客戶數據從不同維度進行分群,再對分群客戶進行特徵提取和分析,從而抓住客戶特點推薦相應的產品和服務。
(2)分類,類似於聚類,但是目的不同,分類可以使用聚類預先生成的模型,也可以通過經驗數據找出一組數據對象的共同點,將數據劃分成不同的類,其目的是通過分類模型將數據項映射到某個給定的類別中,代表演算法是CART(分類與回歸樹)。企業可以將用戶、產品、服務等各業務數據進行分類,構建分類模型,再對新的數據進行預測分析,使之歸於已有類中。分類演算法比較成熟,分類准確率也比較高,對於客戶的精準定位、營銷和服務有著非常好的預測能力,幫助企業進行決策。
(3)回歸,反映了數據的屬性值的特徵,通過函數表達數據映射的關系來發現屬性值之間的一覽關系。它可以應用到對數據序列的預測和相關關系的研究中。企業可以利用回歸模型對市場銷售情況進行分析和預測,及時作出對應策略調整。在風險防範、反欺詐等方面也可以通過回歸模型進行預警。
傳統的數據方法,不管是傳統的 OLAP 技術還是數據挖掘技術,都難以應付大數據的挑戰。首先是執行效率低。傳統數據挖掘技術都是基於集中式的底層軟體架構開發,難以並行化,因而在處理 TB 級以上數據的效率低。其次是數據分析精度難以隨著數據量提升而得到改進,特別是難以應對非結構化數據。
在人類全部數字化數據中,僅有非常小的一部分(約占總數據量的 1%)數值型數據得到了深入分析和挖掘(如回歸、分類、聚類),大型互聯網企業對網頁索引、社交數據等半結構化數據進行了淺層分析(如排序),占總量近 60%的語音、圖片、視頻等非結構化數據還難以進行有效的分析。
所以,大數據分析技術的發展需要在兩個方面取得突破,一是對體量龐大的結構化和半結構化數據進行高效率的深度分析,挖掘隱性知識,如從自然語言構成的文本網頁中理解和識別語義、情感、意圖等;二是對非結構化數據進行分析,將海量復雜多源的語音、圖像和視頻數據轉化為機器可識別的、具有明確語義的信息,進而從中提取有用的知識。
目前來看,以深度神經網路等新興技術為代表的大數據分析技術已經得到一定發展。
神經網路是一種先進的人工智慧技術,具有自身自行處理、分布存儲和高度容錯等特性,非常適合處理非線性的以及那些以模糊、不完整、不嚴密的知識或數據,十分適合解決大數據挖掘的問題。
典型的神經網路模型主要分為三大類:第一類是以用於分類預測和模式識別的前饋式神經網路模型,其主要代表為函數型網路、感知機;第二類是用於聯想記憶和優化演算法的反饋式神經網路模型,以 Hopfield的離散模型和連續模型為代表。第三類是用於聚類的自組織映射方法,以 ART 模型為代表。不過,雖然神經網路有多種模型及演算法,但在特定領域的數據挖掘中使用何種模型及演算法並沒有統一的規則,而且人們很難理解網路的學習及決策過程。
隨著互聯網與傳統行業融合程度日益加深,對於 web 數據的挖掘和分析成為了需求分析和市場預測的重要段。Web 數據挖掘是一項綜合性的技術,可以從文檔結構和使用集合中發現隱藏的輸入到輸出的映射過程。
目前研究和應用比較多的是 PageRank 演算法。PageRank是Google演算法的重要內容,於2001年9月被授予美國專利,以Google創始人之一拉里·佩奇(Larry Page)命名。PageRank 根據網站的外部鏈接和內部鏈接的數量和質量衡量網站的價值。這個概念的靈感,來自於學術研究中的這樣一種現象,即一篇論文的被引述的頻度越多,一般會判斷這篇論文的權威性和質量越高。
需要指出的是,數據挖掘與分析的行業與企業特點強,除了一些最基本的數據分析工具外,目前還缺少針對性的、一般化的建模與分析工具。各個行業與企業需要根據自身業務構建特定數據模型。數據分析模型構建的能力強弱,成為不同企業在大數據競爭中取勝的關鍵。
㈤ 數據分析師職業前景如何主要是在哪些行業的公司需要具備哪些技能
數據分析要學習Python、R、SAS等編程工具;對數據倉庫需要了解可以去九道門做些實驗項目;如果你覺得還是難,那就採用最基礎的學習路徑,直接買MYSQL關系型資料庫的書看,隨便到網上去找個免費的MYSQL課程聽;分布式存儲HDOOP需要簡單了解;雲計算的技術作為了解就可以了;數據可視化不是很難,如果不要求特別美工的話,大家先理解圖表,再研究研究儀錶板,阿里雲的Quich BI及DataV,網路的echarts都不錯,主要是展示的業務結構需要規劃;大數據技術:這個相對來說有些難度,如果是學數學統計類專業小夥伴就非常有優勢了,其他專業的小夥伴也不用擔心,畢竟工作後還可以繼續學習,在工作中用的比較多的是聚類、關聯、決策樹、線性回歸等,如果你不去做模型和演算法工程師那麼只需要會用就可以了,實在不行有專業的工具讓我們用,阿里雲的機器學習PAN是可以直接出結果的工具。可以到九道門商業數據分析實訓官網上去看一些案例,自己做做訓練。如果自學的小夥伴覺得很難堅持,那就只能去報班了,如果要成為大數據分析師的話就要時間沉定,或者讓老師帶你,像我就是進到決明後由趙強老師帶了半年,現在基本上已經能熟練的搞這一套了。
㈥ 數據分析師這份職業的發展前景如何
引言、如今的數據分析師,是一個非常吃香的行業 ,因為數據分析師可以通過將數據進行分析來實現幫助企業的業務增長的一個目的,這個崗位受到了很多行業的歡迎,所以這個行業的市場需求量也逐漸變大 。但是這份行業都發展將近又是如何呢 ?
三、總結
所以從上面可以看出來數據分析師這項行業的發展前景還是非常不錯的,我們完全可以朝著數據分析師的方向去發展。這樣對我們未來工作也是有一定的幫助 。
㈦ 2020年Web前端行業發展前景和就業情況預測
1、Web前端人才需求還會持續增加
據國內權威數據統計,未來五年,我國信息化人才總需求量高達1500萬—2000萬人。其中“網路工程”“Web前端”等人才的缺口最為突出,所以2020年Web前端的市場需求還是很大的。更有甚者,目前不僅大型互聯網公司擬相繼成立了專屬的Web 前端部門,中小型公司和創業公司也急需專業的Web前端工程師。
2、Web前端就業方向廣
Web前端開發在軟體開發中,就業門檻比較低,是比較好就業的,薪資待遇不斷上升。在目前互聯網時代,只要公司有需要開發互聯網產品,包括網站、網頁、H5、小程序、APP等等,就需要前端開發工程師崗位,具體的就業方向還可以按公司的技術需求來區分,側重點各有不同,就業行業隨著互聯網的發展,已經變得越來越廣泛了。
3、Web前端未來發展前途大好
隨著5G時代的到來,之後在移動互聯網領域將會出現新的開發場景,包括自動駕駛、車聯網、物聯網、人工智慧、智能家居還有可穿戴設備等領域將帶來大量的前端開發需求。有需求就會有市場,所以2020年Web前端還是會一如既往地“紅”下去。
根據有關數據顯示,Web前端開發行業是目前平均收入較高的行業之一,其從業人員平均年薪已逾十萬元,有經驗的Web前端開發工程師平均年薪一般在20萬元以上。
以上就是小編分享的Web前端行業發展前景,總之,從以上幾點來看,2020年,Web前端還將繼續是個值得大家選擇的高薪熱門職業。
㈧ 大數據在哪些領域有應用前景
近年來,大數據不斷向世界的各行各業滲透,影響著我們的衣食住行。例如,網上購物時,經常會發現電子商務門戶網站向我們推薦商品,往往這類商品都是我們最近需要的。這是因為用戶上網行為軌跡的相關數據都會被搜集記錄,並通過大數據分析,使用推薦系統將用戶可能需要的物品進行推薦,從而達到精準營銷的目的。下面簡單介紹幾種大數據的應用場景。
大數據讓就醫看病更簡單。過去,對於患者的治療方案,大多數都是通過醫師的經驗來進行,優秀的醫師固然能夠為患者提供好的治療方案,但由於醫師的水平不相同,所以很難保證患者都能夠接受最佳的治療方案。
而隨著大數據在醫療行業的深度融合,大數據平台積累了海量的病例、病例報告、治癒方案、葯物報告等信息資源.所有常見的病例、既往病例等都記錄在案,醫生通過有效、連續的診療記錄,能夠給病人優質、合理的診療方案。這樣不僅提高醫生的看病效率,而且能夠降低誤診率,從而讓患者在最短的時間接受最好的治療。下面列舉大數據在醫療行業的應用,具體如下。
(1) 優化醫療方案,提供最佳治療方法。
面對數目及種類眾多的病菌、病毒,以及腫瘤細胞時,疾病的確診和治療方案的確定也是很困難的。藉助於大數據平台,可以搜集不同病人的疾病特徵、病例和治療方案,從而建立醫療行業的病人分類資料庫。如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診,明確地定位疾病。在制訂治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制訂出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業研發出更加有效的葯物和醫療器械。
(2)有效預防預測疾病。
解決患者的疾病,最為簡單的方式就是防患於未然。通過大數據對於群眾的人體數據監控,將各自的健康數據、生命體征指標都集合在資料庫和健康檔案中。通過大數據分析應用,推動覆蓋全生命周期的預防、治療、康復和健康管理的一體化健康服務,這是未來健康服務管理的新趨勢。當然,這一點不僅需 要醫療機構加快大數據的建設,還需要群眾定期去做檢查,及時更新數據,以便通過大數據來預防和預測疾病的發生,做到早治療、早康復。當然,隨著大數據的不斷發展,以及在各個領域的應用,一些大規模的流感也能夠通過大數據實現預測。
隨著大數據技術的應用,越來越多的金融企業也開始投身到大數據應用實踐中。麥肯錫的一份研究顯示,金融業在大數據價值潛力指數中排名第一。下面列舉若干大數據在金融行業的典型應用,具體如下。
(1) 精準營銷。
銀行在互聯網的沖擊下,迫切需要掌握更多用戶信息,繼而構建用戶360立體畫像,即可對細分的客戶進行精準營銷、實時營銷等個性化智慧營銷。
(2) 風險管控。
應用大數據平台,可以統一管理金融企業內部多源異構數據和外部徵信數據,更好地完善風控體系。內部可保證數據的完整性與安全性,外部可控制用戶風險。
(3) 決策支持。
通過大數據分析方法改善經營決策,為管理層提供可靠的數據支撐,從而使經營決策更高效、敏捷、精準。
(4) 服務創新。
通過對大數據的應用,改善與客戶之間的交互、增加用戶黏性,為個人與政府提供增值服務,不斷增強金融企業業務核心競爭力。
(5) 產品創新。
通過高端數據分析和綜合化數據分享,有效對接銀行、保險、信託、基金等各類金融產品,使金融企業能夠從其他領域借鑒並創造出新的金融產品。
美國零售業曾經有這樣一個傳奇故事,某家商店將紙尿褲和啤酒並排放在一起銷售,結果紙尿褲和啤酒的銷量雙雙增長!為什麼看起來風馬牛不相及的兩種商品搭配在一起,能取到如此驚人的效果呢?後來經過分析發現,這些購買者多數是已婚男士,這些男士在為小孩購買尿不濕的同時,會同時為自己購買一些啤酒。發現這個秘密後,沃爾瑪超市就大膽地將啤酒擺放在尿不濕旁邊,這樣顧客購買的時候更方便,銷量自然也會大幅上升。
之所以講「啤酒-尿布」這個例子,其實是想告訴大家,挖掘大數據潛在的價值,是零售業競爭的核心競爭力,下面列舉若干大數據在零售業的創新應用,具體如下。
(1) 精準定位零售行業市場。
企業想進人或開拓某一區域零售行業市場,首先要進行項目評估和可行性分析,只有通過項目評估和可行性分析才能最終決定是否適合進人或者開拓這塊市場。通常需要分析這個區域流動人口是多少?消費水平怎麼樣?客戶的消費習慣是什麼?市場對產品的認知度怎麼樣?當前的市場供需情況怎麼樣等等,這些問題背後包含的海量信息構成了零售行業市場調研的大數據,對這些大數據的分析就是市場定位過程。
(2) 支撐行業收益管理。
大數據時代的來臨,為企業收益管理工作的開展提供了更加廣闊的空間。需求預測、細分市場和敏感度分析對數據需求量很大,而傳統的數據分析大多採集的是企業自身的歷史數據來進行預測和分析,容易忽視整個零售行業信息數據,因此難免使預測結果存在偏差。企業在實施收益管理過程中如果能在自有數據的基礎上,依靠一些自動化信息採集軟體來收集更多的零售行業數據,了解更多的零售行業市場信息,這將會對制訂准確的收益策略,贏得更高的收益起到推進作用。
(3) 挖掘零售行業新需求。
作為零售行業企業,如果能對網上零售行業的評論數據進行收集,建立網評大資料庫,然後再利用分詞、聚類、情感分析了解消費者的消費行為、價值取向、評論中體現的新消費需求和企業產品質量問題,以此來改進和創新產品,量化產品價值,制定合理的價格及提高服務質量,從中獲取更大的收益。
㈨ 什麼是大數據,大數據時代有哪些趨勢
行業主要上市公司:易華錄(300212)、美亞柏科(300188)、海量數據(603138)、同有科技(300302)、海康威視(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科創信息(300730)、神州泰岳(300002)、藍色游標(300058)等
本文核心數據:大數據產業鏈、產業規模、應用市場結構、競爭格局、發展前景預測等
產業概況
1、定義:大數據產業覆蓋范圍廣
根據中國信通院發布的《大數據白皮書》,大數據產業是以數據及數據所蘊含的信息價值為核心生產要素,通過數據技術、數據產品、數據服務等形式,使數據與信息價值在各行業經濟活動中得到充分釋放的賦能型產業。不同機構對大數據的定義也有所不同,具體如下:
2、產業鏈剖析:大數據產業鏈龐大
大數據產業鏈覆蓋范圍廣,上游是基礎支撐層,主要包括網路設備、計算機設備、存儲設備等硬體供應,此外,相關雲計算資源管理平台、大數據平台建設也屬於產業鏈上游;
大數據產業中游立足海量數據資源,圍繞各類應用和市場需求,提供輔助性的服務,包括數據交易、數據資產管理、數據採集、數據加工分析、數據安全,以及基於數據的IT運維等;
大數據產業下游則是大數據應用市場,隨著我國大數據研究技術水平的不斷提升,目前,我國大數據已廣泛應用於政務、工業、金融、交通、電信和空間地理等行業。
大數據產業上游基礎設施具體包括IT設備、電源設備、基礎運營商及其他設備,相關代表企業華為、中興通訊、艾默生、三大運營商等。
中游大數據領域可以細分為數據中心、大數據分析、大數據交易與大數據安全等子行業,相關代表企業包括寶信軟體、數據港、久其軟體、拓爾思、上海數據交易中心、貴陽大數據交易所與華雲數據等。
在下游應用市場,我國大數據應用范圍正在快速向各行各業延伸,除發展較早的政務大數據、交通大數據外,在工業、金融、健康醫療等眾多領域大數據應用均初見成效。
產業發展歷程:十年來大數據產業高速增長,信息智能化程度得到顯著提升
我國大數據產業布局相對較早,2011年,工信部就把信息處理技術作為四項關鍵技術創新工程之一,為大數據產業發展奠定了一定的政策基礎。自2014年起,「大數據」首次被寫進我國政府工作報告,大數據產業上升至國家戰略層面,此後,國家大數據綜合試驗區逐漸建立起來,相關政策與標准體系不斷被完善,到2020年,我國大數據解決方案已經發展成熟,信息社會智能化程度得到顯著提升。
產業政策背景:優化升級數字基礎設施,鼓勵大數據產業發展
2014年,大數據首次寫入政府工作報告,大數據逐漸成為各級政府關注的熱點,政府數據開放共享、數據流通與交易、利用大數據保障和改善民生等概念深入人心。此後國家相關部門出台了一系列政策,鼓勵大數據產業發展。
當前,隨著5G、雲計算、人工智慧等新一代信息技術快速發展,信息技術與傳統產業加速融合,數字經濟蓬勃發展,數據中心作為各個行業信息系統運行的物理載體,已成為經濟社會運行不可或缺的關鍵基礎設施,在數字經濟發展中扮演至關重要的角色。數據中心作為大數據產業重要的基礎設施,其快速發展極大程度地推動了大數據產業的進步。在2021年3月發布的「十四五」規劃中,大數據標准體系的完善成為發展重點。
產業發展現狀
1、行業整體情況:大數據產業規模維持高速增長 主要應用於金融和政府領域
——大數據產業規模:2021年超過800億元
近年來我國大數據行業取得快速發展,賽迪CCID統計,我國大數據市場規模由2019年的619.7億元增長至2021年的863.1億元,復合年增長率達到18.0%,大數據市場規模包含了大數據相關硬體、軟體、服務市場收入。
——大數據市場結構:產業整體以大數據服務為主,應用領域以金融和政府領域為主
從產業結構來看,目前,我國的大數據產業進入高質量發展階段,大數據軟體和大數據服務的需求開始不斷提升,大數據硬體佔比有所下降但仍占據主導地位,
CCID統計,2021年我國大數據市場結構中,大數據硬體、大數據軟體和大數據服務的市場佔比分別為40.5%、25.7%和33.8%。近幾年大數據硬體的佔比在逐漸下降,大數據軟體和大數據服務的佔比在逐步提高。未來我國大數據軟體和服務市場相比硬體市場將呈現更好的發展態勢。
從應用領域來看,大數據分析產品及服務已經從最早的為電信領域客戶提供經營分析、為銀行領域客戶提供風控管理等輔助性經營決策,發展到目前的為金融、電信、政府、互聯網、工業、健康醫療、電力等多個行業領域客戶提供預測性分析、自主與持續性分析等,以實現企業決策與行動最優化。大數據分析產品及服務應用已經十分廣泛,但由於各下游領域業務特點的不同,決定了其對大數據分析產品及服務的具體需求存在一定差異。
CCID統計,2021年我國大數據分析市場下遊行業中,金融、政府、電信和互聯網位居應用領域前四名,市場佔比分別為19.1%、16.5%、15.2%和13.9%,合計超過60%;其他重點應用領域主要包括健康醫療、交通運輸、工業、電力等。
2、細分市場一:金融大數據
——金融大數據需求:金融業務規模不斷擴大,帶動大數據需求提升
從金融領域需求來看,近年來,中國金融領域業務規模不斷擴大,其中中國銀行業金融機構不斷積極擁抱金融科技,推動數字化轉型,整體行業規模擴大;保險業和證券業的收入也隨著市場經濟的發展而提升。
近年來,隨著新一代信息技術加速突破應用,以移動金融、互聯網金融、智能金融等為代表的金融新業態、新應用、新模式正蓬勃興起,我國金融業開始步入一個與信息社會和數字經濟相對應的數字化新時代,金融數字化轉型成為金融行業轉型發展的焦點。2019年,人民銀行印發《金融科技發展規劃(2019-2021年)》,構建起金融科技「四梁八柱」的頂層設計,明確了金融科技發展方向和任務、路徑和邊界。2022年1月,人民銀行再次發布《金融科技發展規劃(2022-2025年)》明確提出,從戰略、組織、管理、目標、路徑以及考評等方面將金融數字化打造成金融機構的「第二發展曲線」。隨著金融業務規模不斷擴大,加之新一代信息技術的發展,大數據在金融領域的需求將不斷提升。
——金融大數據應用場景
過去幾年,金融大數據帶來了重大的技術創新,為行業提供了便捷、個性化和安全的解決方案。目前,中國金融大數據典型的應用場景包括股票洞察、欺詐檢測和預防、風險分析與金融服務領域。
3、細分市場二:政府大數據
——政府大數據需求:互聯網政務服務用戶規模不斷提升
從政府領域需求來看,根據中國互聯網路信息中心(CNNIC)發布的第49次《中國互聯網路發展狀況統計報告》數據顯示,互聯網政務服務發展展現出了巨大潛能。截至2021年12月,我國互聯網政務服務用戶規模達9.21億,較2020年12月增長9.2%,占網民整體的89.2%。「十四五」規劃綱要提出要「推進網路強國建設,加快建設數字經濟、數字社會、數字政府,以數字化轉型整體驅動生產方式、生活方式和治理方式變革」。2021年,我國各省市積極探索、持續推進互聯網政務服務建設發展,努力提升公共服務、社會治理等數字化、智能化水平。截至2021年11月,全國已有20多個省(區、市)相繼出台數字政府建設的有關規劃,為我國互聯網政務服務發展注入新的活力。
——政府大數據應用場景
中國政府大數據主要應用於信息共享、政務數據管理、城市網路管理與社會管理幾大領域。加強電子政務建設,管理好政府的數據資產,完善政府決策流程,將是未來數年大數據在公共管理領域發展的重要方向。大數據將對政府部門的精細化管理和科學決策發揮重要作用,從而提高政府的服務水平。輿情監測、交通安防、醫療服務等將是公共管理領域重點應用領域。
4、細分市場三:互聯網大數據
——互聯網大數據需求:互聯網行業規模不斷提升
在人工智慧、雲計算、大數據等信息技術和資本力量的助推和國家各項政策的扶持下,2021年,互聯網和相關服務業發展態勢平穩向好。企業業務收入和營業利潤保持較快增長;互聯網平台服務和數據業務實現快速發展,信息服務收入較快增長;多省份保持增長態勢。2021年我國規模以上互聯網和相關服務企業完成業務收入15500億元,同比增長21.2%。
2022年上半年,我國規模以上互聯網和相關服務企業完成互聯網業務收入7170億元,同比增長0.1%。
註:2021年及以前年份,規模以上互聯網和相關服務企業,指獲得《增值電信業務經營許可證》在中國大陸境內經營全國或區域性增值電信業務、上年度互聯網業務收入500萬元及以上的企業。2022年,規模以上互聯網和相關服務企業口徑由互聯網和相關服務收入500萬元以上調整為2000萬元及以上。
——互聯網大數據應用場景
在互聯網行業,除了社交、B2C業務之外,像在線音視頻業務、廣告監測、精準營銷等等,也是未來潛在應用場景。
產業競爭格局
1、區域競爭:中國大數據企業主要分布在華南和華東沿海地區
根據企查貓數據,截止2022年9月23日,全國大數據產業中「存續」及「在業」的企業多集中分布在華南和華東沿海地區。其中,廣東省的大數據企業最多。
2、企業競爭:技術領域創新和經驗是關鍵,融合應用領域行業龍頭更能獲得青睞
根據大數據產業聯盟調研和發布的2022大數據企業投資價值百強榜單來看,榜單共選取了10個細分領域,涉及大數據基礎軟體、數據治理與分析、數據安全、商業智能、營銷大數據5個通用領域,以及政府大數據、金融大數據、工業大數據、健康醫療大數據、空間地理信息大數據5個融合應用領域。
大數據基礎軟體、數據治理與分析、數據安全、數據可視化等,是所有細分行業應用場景的基礎支撐,體現了大數據技術價值和作用。在這些細分領域提供技術解決方案的企業中,技術創新能力較強、在各自的細分領域有較長時間技術積累的廠商是投資機構的關注重點。
政府大數據、金融大數據發展相對成熟,落地實踐案例多和品牌知名度高的企業受市場關注程度較高。工業大數據、健康醫療大數據、空間地理信息大數據等市場仍處於待爆發階段,在各自細分領域建立競爭優勢的企業容易獲得投資機構的青睞。
註:2022年大數據企業投資價值百強榜是從企業估值/市值、營收狀況、創新投入、產品競爭力、細分市場潛力、領導層能力等多個維度進行綜合評比,同時結合行業專家打分,評選出2022年度大數據領域最具投資價值的100家企業。
產業發展前景:大數據將繼續保持高速增長
大數據作為新一代信息技術的重要標志,對生產製造、流通、分配、消費活動以及經濟運行機制、社會生活方式和國家治理能力均產生重要影響。伴隨國家快速推動數字經濟、數字中國、智慧城市等發展建設,未來大數據行業對經濟社會的數字化創新驅動、融合帶動作用將進一步增強,應用范圍將得到進一步拓寬,大數據市場也將保持持續快速的增長態勢。預計2027年我國大數據市場規模將達到2930.9億元,未來六年復合年增長率為22.6%。
更多本行業研究分析詳見前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》。