導航:首頁 > 數據處理 > 電商如何用好大數據

電商如何用好大數據

發布時間:2023-01-29 10:26:46

A. 電商企業是如何依靠大數據進行精準營銷的

信息大數據時代,電商企業採用信息技術來收集和儲存大量的消費者信息資源,並對其進行分析處理,來進行精準的市場定位,以及確定目標消費群體,為實施精準營銷做第一手准備。之後利用大數據平台對目標消費群體進行屬性分析、篩選、分類標記,建立用戶個性標簽,針對用戶的不同個性需求,提供精準的個性化產品和服務,實現線上廣告的精準投放。

電商企業想要做全局性和系統性的決策,不能僅憑大量的數據,還要加上商業分析,大數據與商業分析的結合才能稱得上是大數據精準營銷。在商業分析里,必須先了解市場,了解某個領域的消費者真正的需求;其次要了解行業,包括行業的特徵、要求和規則;最後才是懂企業的運營,把多個模塊和資源有序地整合起來,從而共同創造價值。這些具備後,用大數據進行適度輔佐,在商業的主導下,真正發揮大數據的作用。下面我們將用一個例子來說明:電商企業是如何依靠大數據進行精準營銷的。

項目背景:

年中大促期間,電商平台的護膚品各類品牌競爭激烈,某護膚品品牌想藉助大數據營銷平台完成兩款面膜的線上推廣。利用大數據平台的精準定向方式,針對全國18歲以上的女性進行線上廣告的推送,為活動網站引入高質量客流,促進消費者和品牌的深度互動。

投放方案

1、優選投放媒體

優選幾個國內主流媒體和與產品相關性高的高質量媒體,分別採用Banner、信息流和視頻貼片的廣告形式進行投放。通過平台一站式操作對這些媒體進行競價廣告投放。當用戶點擊廣告後對其進行標記。

2、MOB數據定向

通過MOB大數據,智能分析移動設備擁有者的屬性以及設備中的APP構成,鎖定女性用戶且安裝有美妝類APP的移動設備,針對這對這類設備進行全媒體廣告投放,對用戶進行廣告包圍,加深用戶印象,增加用戶購買意向。

3、重定向

標記活動落地頁到訪人群,當他們瀏覽有可競價廣告位的媒體時,發起追蹤投放,吸引對本廣告內容感興趣的訪客重新返回活動落地頁。

4、投放優化

通過投放反饋的數據,我們從這幾方面進行優化:

1、媒體平台優化,篩選出高點擊率媒體平台,排除低點擊率平台;

2、投放時段優化,排除低點擊率時段,集中投放在高點擊率時段;

3、素材優化,篩選出高點擊率素材並替換掉低點擊率素材。

投放效果

在本次的線上推廣中,小蜜蜂數據平台全程實時監測投放數據,其中18~24歲的女性訪客量佔比為50%;25~29歲的女性訪客量佔比為32%;30~34歲的女性訪客量佔比為18%。每位獨立訪客的付費比預期值要低20%,點擊量比預期值要高25%,到站轉化率超過預期值高15%。

此案例可看出電商企業借用大數據進行精準營銷可大大提高電商廣告的精準度和命中率,在減少交易成本的同時也提高了交易效率,大大提升了整體的電商服務水平,實現企業利益最大化。​​​

B. 大數據下如何做好電商運營

首先,要了解什麼是大數據營銷?
大數據營銷是指通過互聯網採集大量的行為數據,首先幫助廣告主找出目標受眾,以此對廣告投放的內容、時間、形式等進行預判與調配,並最終完成廣告投放的營銷過程。
大數據營銷是基於多平台的大量數據,依託大數據技術的基礎上,應用於互聯網廣告行業的營銷方式。大數據營銷的核心在於讓網路廣告在合適的時間,通過合適的載體,以合適的方式,投給合適的人。
大數據營銷衍生於互聯網行業,又作用於互聯網行業。依託多平台的大數據採集,以及大數據技術的分析與預測能力,能夠使廣告更加精準有效,給品牌企業帶來更高的投資回報率。
關於大數據營銷的價值有哪些?
1、基於需求定製產品
如果想在行業有一席之地,只能增加產品的附加屬性,找到產品的獨特賣點。
2、開展精準推廣活動
那麼在大數據下如何做好電商營銷?
大數據下人群定向技巧有哪些?
1、大數據下買家特徵分析
1>賬號等級;2>買家購物習慣;3>買家性別;4>買家大網時間;5>買家地域;6>;買家消費層次;7>;年齡層次;8>購物終端;pc還是移動......
2、大數據下產品屬性分析應用
所有產品都是為顧客服務的,所以在選產品前,必須明確顧客需求買家屬性分析,圖片設計一定要場景、情景式營銷。
契機
第一,用戶行為與特徵分析。只有積累足夠的用戶數據,才能分析出用戶的喜好與購買習慣,甚至做到「比用戶更了解用戶自己」。這一點,才是許多大數據營銷的前提與出發點。
第二,精準營銷信息推送支撐。精準營銷總在被提及,但是真正做到的少之又少,反而是垃圾信息泛濫。究其原因,主要就是過去名義上的精準營銷並不怎麼精準,因為其缺少用戶特徵數據支撐及詳細准確的分析。。
第三,引導產品及營銷活動投用戶所好。如果能在產品生產之前了解潛在用戶的主要特徵,以及他們對產品的期待,那麼你的產品生產即可投其所好。
第四,競爭對手監測與品牌傳播。競爭對手在干什麼是許多企業想了解的,即使對方不會告訴你,但你卻可以通過大數據監測分析得知。品牌傳播的有效性亦可通過大數據分析找准方向。例如,可以進行傳播趨勢分析、內容特徵分析、互動用戶分析、正負情緒分類、口碑品類分析、產品屬性分布等,可以通過監測掌握競爭對手傳播態勢,並可以參考行業標桿用戶策劃,根據用戶聲音策劃內容,甚至可以評估微博矩陣運營效果。
第五,品牌危機監測及管理支持。新媒體時代,品牌危機使許多企業談虎色變,然而大數據可以讓企業提前有所洞悉。在危機爆發過程中,最需要的是跟蹤危機傳播趨勢,識別重要參與人員,方便快速應對。大數據可以採集負面定義內容,及時啟動危機跟蹤和報警,按照人群社會屬性分析,聚類事件過程中的觀點,識別關鍵人物及傳播路徑,進而可以保護企業、產品的聲譽,抓住源頭和關鍵節點,快速有效地處理危機。
第六,企業重點客戶篩選。許多企業家糾結的事是:在企業的用戶、好友與粉絲中,哪些是最有價值的用戶?有了大數據,或許這一切都可以更加有事實支撐。淘店家網店過戶認為可以從用戶訪問的各種網站可判斷其最近關心的東西是否與你的企業相關;從用戶在社會化媒體上所發布的各類內容及與他人互動的內容中,可以找出千絲萬縷的信息,利用某種規則關聯及綜合起來,就可以幫助企業篩選重點的目標用戶。

C. 網店運營之如何通過大數據運營店鋪

隨著互聯網的快速發展,很多用戶的資料和數據都在網路上流傳,店鋪也開始不斷的通過一些大數據去進行分析,制定營銷策略。那麼對於依靠流量的電商平台來說,數據是尤為重要的。賣家經常逛淘寶時會發現很多時候打開這些平台時,展示出來的時我們最近搜索過的產品,這就是大數據時代的推送,平台會根據你曾經搜索過的產品,去為你推送相關產品,下面就來詳細為各位賣家講一下,希望可以幫助賣家更好的運營店鋪。
1、改變傳統商業模式
通過自有平台的原始數據積累,進行有針對性的客戶行為分析,進一步利用所獲取的數據定向推廣。通過層層過濾和篩選,才能夠形成對未來商業行為的強有力數據支撐。
2、重視內容營銷
賣家可以利用文案等形式,吸引消費者的目光,增加產品的曝光率。當然小編這里說的文案一定是耳熟能詳,且足夠引發共鳴的,這樣才能藉助文字提高店鋪的收益。而大數據的作用則是匯聚目標人群關注的熱點、強共鳴性內容等。賣家可以通過文字化等手法,實現優質文案的打造。
3、關注客戶個性化需求
相信各位消費者都想讓自己的需求得到滿足,想讓眾多電商平台能夠了解自己的需求,及時推送精準的信息,方便自己隨時找到想要的東西。這些在傳統的產業中是無法實現的,但是通過大數據可以進行消費者的行為識別與歸類,能夠精準的的出消費者的個性化需求。
隨著互聯網大數據的快速發展,淘寶賣家的運營逐漸實現多樣化且全面化,從中可以看出數據的重要性。建議賣家抓住大數據的步伐,這樣才能更好的運營店鋪。

D. 電商平台如何利用大數據做好用戶體驗

在中國,通過大數據人物畫像來實現流量個性化已非新鮮事,同時在大洋彼岸的美國,目前已經更進一步,通過最先進的數據分析平台,電商可以通過社交平台等數據對用戶個性特徵進行分析,從而實現更精準的營銷,而且並非「財大氣粗」的中小企業也可以享受到這樣的福利。
不是所有的行為數據都有價值對於電商而言,其對大數據分析的主要需求可以體現在兩方面,一是快速反應出問題所在,二是發現新的用戶群體
對於備受關注的後者,電商希望通過智能聯網分析已有的數據,發掘並預測出用戶的興趣所在,刺激用戶購買積極性,並將產品推向特定人群。
目前業界的普通實現方式是,通過用戶網路上留下的歷史信息、記錄,來猜測喜好,例如相關圖書推薦、機票航班推薦等,但失算之處可能在於精準度和推薦時機不盡人意,比如用戶已經旅行歸來,系統還在推薦往返機票。
目前美國有一種研究方向,通過非結構化數據分析技術對用戶進行個性化維度分析,包括對用戶在網路上更新的個人狀態信息進行分析,如Twitter、Facebook,推定用戶個性及特徵,以精準定義個人並實現標簽化,同時反饋給商家並與目標市場用戶相匹配,從而實現產品的關聯。
對此,美國數據分析科學家、Taste Analytics創始人及全美五大可視化研究中心的Derek Wang(汪曉宇)博士表示,傳統的方式需要基於大量的行為數據進行分析,並相信所有的動作具有價值,但事實卻並非這樣,容易造成對精準度和時機的把握不盡人意;而通過對人在網路上留下的真實語言、說話方式、評價內容等進行個性化維度分析,更貼近人真實的本性,這當然也包括購買喜好,只有這樣才能實現更加准確的產品購買需求挖掘。
電商商戶的「福利」
目前,該分析技術在電商平台上更能直接釋放效力的方式,便是針對中小型商戶的解決方案:對用戶產品評價進行分析,來優化產品、提升用戶體驗。
Derek Wang舉例道,通過Taste Analytics Signals數據分析平台,亞馬遜平台上的耳機商戶,可以對平台上用戶的產品評價及Facebook上的留言進行語義分析,得出對耳機品牌、電池壽命、品種型號的用戶反饋,以及不同產品間如Bose與Sony的產品分析
這對於美國為數眾多的亞馬遜、新蛋、易貝商戶而言無疑十分受用,其可以及時對產品和銷售過程進行優化。
另一個典型應用是電商平台本身。美國某著名的大型家居銷售企業,在其電商網路平台上,通過刺激網路流量來買賣產品。利用數據分析平台,其不僅發現並解決了用戶消費時信用卡連刷2次的問題,同時觀察到網路流量在一周中的不平均分布,後續通過市場促銷,改變了市場營銷過程。
(用Taste Analytics Signals平台對Amazon某熱銷汽水的分析結果)
決策在數據之上而非數據本身
用戶的特徵來自於文本分析,用戶在網路上說的每一句話都將可能成為分析點。無疑更多的數據將有力於對用戶行為進行匹配,提高分析准確性,而這方面社交平台則提供了一個很好的非結構化數據的來源。
事實上,美國電商本身已經在開始著手整合社交網路的數據信息,例如閃購網站Myhabit建議用戶通過亞馬遜賬號登陸;電商Macys需要用Facebook賬號登陸(這樣的整合在國內也並不鮮見)。對於用戶,這樣的登陸方式更方便快捷;對於商戶,可以將個人信息關聯起來;而對於大數據技術/服務提供商,數據分析服務便可以由此展開,進行深度數據挖掘。
在Derek Wang看來,此項圍繞人的非結構化數據分析平台服務,不僅能提升結果的准確性,更重要的是它建立的不是一個推薦系統,而是一個增強智慧的過程。畢竟僅基於既有行為的數據分析會導致可能的失敗,小到上述提及的機票推薦,大到金融領域採用數學模型的危險性在次貸危機中已經暴露無疑。
「由機器提取的數據內涵,通過圖像的方法展示給企業決策者,決策者通過與機器互動後做出決定。數據分析平台是輔助企業決策者的工具,也是它的價值所在。」 Derek Wang說道。
不謀而合,《紐約時報》資深撰稿人史蒂夫·洛爾曾著書大數據時評論,雖然決策活動對數據與分析的倚重與日俱增是大勢所趨,但同時還要讓常識發揮應有的作用,經驗與直覺仍然在決策中佔有一席之地,而好的直覺又往往建立在大量數據分析基礎之上。
機器與人分工合作才更好,更加值得一提的是,直觀的圖像可視化的呈現方式,使得電商及商戶的內部分析師即使沒有IT背景,也可以輕松地掌握產品動態,從而幫助其贏得市場。
大數據確有裨益,但並不是所有企業都能成功掘金大數據;只有那些富有遠見、重視系統且敢於投資的公司才會有所斬獲。對於零售業而言,有三個重要戰略可幫助電子商務成功運用大數據。
正確理解大數據
不必糾結於大數據到底是什麼,試圖計算出多少數據才算大數據是不明智的。首先,沒有確切的數字或數量級可用作數據量的分界線,因為大數據不在「量」,而在「全」。通過對全面數據的分析可以發現相應的趨勢,進一步預測未來。想要掌握大數據,必須具備「大數據」的思維模式,即關注於那些已幫助完成了某項任務的數據。從龐大的歷史數據中尋找規律,從而預測未來;或者找出有關因素,對搜索最佳數據的系統進行改善,獲得正確數據取得最大利益。
如何獲取大數據?
大數據被炒熱和巨無霸企業在其中獲得的巨大商業價值密不可分,但這並不意味著大數據是只有大公司才買得起的「獨有玩偶」。小公司也能擁有自己的「大數據」。雖然大多數電商企業仍處於起步階段,但它們也可以收集數據,挖掘優秀人才幫助做出更加明智的決定。數據分析可以從小數據開始、效果立竿見影,隨後發展成為大數據。即使一家小咖啡廳也能通過探尋顧客的飲用習慣、信用卡記錄以及在線定位設置而建立自己的「大數據」。
盡管中小型企業還未完全配備企業先進的大數據線上工具和模式,但他們仍能從本公司歷史數據中找出規律。例如,有了一兩個月推廣促銷活動的歷史數據後,服裝電商公司就可以開始分析各個品類的銷售表現情況,掌握一周或一個月內的最暢銷和最滯銷的銷售品類信息,同時清楚了解長期內的平均增長率和復合增長率。這樣的數據分析方法能提供產品銷售額和產品銷售表現的衡量指標,從而找出產品銷售模式和趨勢,做出下一步商業決策。這樣將幫助企業實現更大的銷售額,同時,無論有無市場推廣活動,都可以監控產品的銷售表現。
整合零售策略與大數據
從企業的角度來看,大數據的最大價值在於零售策略與大數據技術相結合。目前,由於消費者對於他們所希望的購物時間與購物方式的要求越來越高,現代零售業已變得愈發復雜。因此,零售商需要更加聰明地來服務顧客,更加靈活地選用庫存和配送訂單的地點,更加明確如何使用搜集到的顧客數據進行線上線下的交叉銷售和追加銷售。為了達成這一目的,零售商需要藉助一個定製軟體來制定以顧客為導向、基於數據的策略,以便於為顧客提供個性化服務。
此外,企業必須將零售策略與數據分析最大程度地相匹配,保證銷售計劃的實現。大數據最大的特點之一就是在於能夠高速更新和處理信息。根據這一特性,商業數據一旦生成,就可以進行相應策略的制定,幫助公司贏得時間與空間調整市場策略,以最充分地發揮自身優勢。這就像防洪預警:上游一旦有所警示,下游就應立即作出回應調整。例如,涉足線上的傳統零售商,在一組貨品的15分鍾促銷時間內,往往會准備三套應變策略,以確保商品按計劃銷售。 通過整合零售策略和大數據,企業將能夠吸引更多消費者、為他們提供定製化服務,從而提升產品銷售表現、增加銷售額,進而擴大收益。

E. 一個企業,特別是電商類的,如何進行大數據分析

無論是電商類還是其他行業相關的互聯網信息中都有大量的文本數據,所以進行大數據分析,很重要的一部分是文本分析。文本數據通常是非結構化的,採集文本數據後的一個關鍵環節是要將其轉化為能被計算機理解和處理的結構化數據,才能進一步對其進行系統化的處理分析,提煉出有意義的部分。大致可以分為以下步驟:
1、數據採集
明確分析的目的和需求後,通過不同來源渠道採集數據。
2、文本清洗和預處理
文本清洗首要是把噪音數據清洗掉,然後根據需要對數據進行重新編碼,進行預處理。
3、分詞
在實際進行分詞的時候,結果中可能存在一些不合理的情況。因此,在基於演算法和中文詞庫建成分詞系統後,還需要不斷通過訓練來提升分詞的效果,如果不能考慮到各種復雜的漢語語法情況,演算法中存在的缺陷很容易影響分詞的准確性。
4、詞頻和關鍵詞
詞頻就是某個詞在文本中出現的頻次。簡單來說,一個詞在文本中出現的頻次越高,這個詞在文本中就越重要,就越有可能是該文本的關鍵詞。
5、語義網路分析
語義網路分析是指篩選統計出高頻詞以後,以高頻詞兩兩之間的共現關系為基礎,將詞與詞之間的關系進行數字化處理,再以圖形化的方式展示詞與詞之間的結構關系。這樣一個語義網路結構圖,可以直觀地對高頻詞的層級關系、親疏程度進行分析展現。
6、情感分析
情感分析,主要是分析具有情感成分詞彙的情感極性(即情感的正性、中性、負性)和情感強烈程度,然後計算出每個語句的總值,判定其情感類別。還可以綜合全文本中所有語句,判定總輿情數據樣本的整體情感傾向。
7、數據可視化展現
通過可視化展現形式,可直觀呈現多維度數據表現,用於總結、匯報等。
想要快速進行大數據分析,可通過新浪輿情通實現,系統一站式提供信息採集、大數據分析、可視化報告等服務,針對各行業還提供定製化大數據解決方案。

F. 在電商行業如何進行大數據分析的

電商行業相對於傳統零售業來說,最大的特點就是一切都可以通過數據化來監控和改進。通過數據可以看到用戶從哪裡來、如何組織產品可以實現很好的轉化率、你投放廣告的效率如何等等問題。
當用戶在電商網站上有了購買行為之後,就從潛在客戶變成了價值客戶。
我們一般都會將用戶的交易信息,包括購買時間、購買商品、購買數量、支付金額等信息保存在自己的資料庫里,所以對於這些客戶,我們可以基於網站的運營數據對他們的交易行為進行分析,以估計每位客戶的價值,及針對每位客戶擴展營銷的可能性。

G. 電子商務中如何使用大數據

大數據在很多的領域中都有應用,而且大數據所涉及到的領域都有不同程度的進步和發展,這是一個值得欣慰的事情,當然也正是這個原因,很多的行業都爭先恐後地使用大數據技術。當然,電子商務也不例外,在這篇文章中我們就給大家介紹一下電子商務領域使用大數據的思維方式,希望這篇文章能夠幫助大家理解大數據在電子商務中的應用。
電子商務有了大數據技術的加持,於是搖身一變成為電子智能商務,而電子商務智能的原理就是大數據改變了電子商務模式,讓電子商務更智能。商務智能,大數據時代重新獲得定義。而現在,傳統企業進入互聯網,如果掌握了「大數據」技術應用途徑之後,就會發現有一種豁然開朗的感覺,這些能夠給我們帶來很多的體驗。而大數據時代不是說我們這個時代除了大數據什麼都沒有,哪怕是在互聯網和IT領域,它也不是一切,只是說在我們的時代特徵裡面這一個特殊的屬性,從而導致我們對以前的生存狀態,以及我們個人的生活狀態的一個差異化的一種表達。
當然,如果軟體有了大數據,那麼這個軟體就會更加智能,雖然說,我們仍處於大數據時代來臨的前夕,但我們的日常生活已經離不開它了。交友網站根據個人的性格與之前成功配對的情侶之間的關聯來進行新的配對。具有自我修正功能的智能手機通過分析我們以前的輸入,將個性化的新單詞添加到手機詞典里。在不久的將來,世界許多現在單純依靠人類判斷力的領域都會被計算機系統所改變甚至取代。計算機系統可以發揮作用的領域還有更多的方向,不只是我們認為的交友與娛樂。
如果大數據能夠運用到疾病診斷、推薦治療措施,甚至是識別潛在犯罪分子上,這樣就能夠造福人類。這就像互聯網通過給計算機添加通信功能而改變了世界,大數據也將改變我們生活中最重要的方面,因為它為我們的生活創造了前所未有的可量化的維度。用電子商務更智能的思維方式思考問題,解決問題。大家都知道,人腦思維與機器思維有很大差別,但機器思維在速度上是取勝的,而且智能軟體在很多領域已能代替人腦思維的操作工作。人們需要的所有信息都可得到顯現,而且每個人互聯網行為都可記錄,這些記錄的大數據經過雲計算處理能產生深層次信息,經過大數據軟體挖掘,企業需要的商務信息都能實時提供,為企業決策和營銷、定製產品等提供了大數據支持。
關於大數據加持的電子商務的具體情況我們就給大家講解到這里了,通過這篇文章相信大家對大數據應用於電子商務有了一定的了解。其實我們可以發現,大數據是一個十分有用的技術,同時也正因為各個領域的使用而進步,而這些領域也因為應用大數據而獲得了發展,這就形成了雙贏。

閱讀全文

與電商如何用好大數據相關的資料

熱點內容
sps數據年齡怎麼分 瀏覽:852
哪些v8車型有閉缸技術 瀏覽:569
廳級信息中心是什麼級別 瀏覽:439
天津杏花村汾酒怎麼代理 瀏覽:535
如何查詢浙江造價信息網里的信息 瀏覽:507
蘋果快捷指令發信息為什麼收不到 瀏覽:297
菜市場雞檔旁邊可賣什麼不影響 瀏覽:1124
延安葡萄酒代理有哪些 瀏覽:263
大潤發生鮮區的定義指哪些產品 瀏覽:827
excel如何製作多項目數據圖 瀏覽:543
寧德師范學院什麼時候出錄取信息 瀏覽:935
如何退出輕快司機程序 瀏覽:501
產品流光怎麼拍 瀏覽:372
網站上上傳的信息如何排序 瀏覽:428
學生登記表頁面設置數據是多少 瀏覽:1055
企業代理開戶的銀行卡怎麼激活 瀏覽:952
長治有什麼古玩市場 瀏覽:846
如何代理小黃車 瀏覽:243
冷門產品視頻怎麼拍攝 瀏覽:240
技術學院軟體哪個好 瀏覽:372