A. 大數據需要學什麼
數據倉庫東西HIVE;大數據離線剖析Spark、Python言語;數據實時剖析Storm等都是學習大數據需要了解和掌握的。
大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據歸納有五大特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
B. 大數據需要什麼基礎
學習大數據需要以下幾個方面的基礎: 新手學大數據,首先要具備的是編程語言基礎,如Java、C++等,要初步掌握面向對象、抽象類、介面、繼承、多態和數據流及對象流等基礎,編程語言在大數據中占據了不可逾越的地位,掌握一門編程語言再學習大數據會輕松很多,甚至編程語言要比大數據學習的時間更長。 Linux系統的基本操作是大數據不可分割的一部分,大數據的組件都是在這個系統中跑的
C. 大數據處理的第一步需要做什麼
「大數據」已經無時無刻的在影響我們的工作,很多人想知道大數據到底是怎樣知道來工作的,今天就和大家分享一下大數據處理的基本過程。
D. 想成為大數據開發工程師有哪些要求
分兩個方面來講,一方面是專業領域的硬實力,另一方面是在職場發展上的軟實力:
專業技能實力,對於大數據開發工程師來講,是非常關鍵的,這個決定了你在技術面試當中能夠說服面試官,具備這個崗位所需要的能力。
1、熟練精通至少一門編程語言
掌握Java是必不可少的,要是能同時熟悉Python、Scala就更好了。
2、掌握Linux操作系統
百分之八十以上的企業使用Linux操作系統進行雲計算、大數據平台的構建,所以做大數據開發,Linux必備。
3、掌握大數據主流框架及組件
主要是Hadoop、Spark、Storm、Flink等一系列框架,及其生態圈組件,這部分是重中之重。
軟實力,就相對來說要虛一些了,邏輯思維能力、溝通能力、學習能力等等,通常在HR面試的時候,主要就是考察這些方面。
E. 大數據要學什麼
大數據學習內容主要有:
①JavaSE核心技術;
②Hadoop平台核心技術、Hive開發、HBase開發;
③Spark相關技術、Scala基本編程;
④掌握Python基本使用、核心庫的使用、Python爬蟲、簡單數據分析;理解Python機器學習;
⑤大數據項目開發實戰,大數據系統管理優化等。
你可以考察對比一下南京課工場、北大青鳥、中博軟體學院等開設有大數據專業的學校。祝你學有所成,望採納。
北大青鳥中博軟體學院大數據課堂實拍
F. 大數據工程師需要具備哪些基礎
一、計算機編碼能力
實際開發能力和大規模的數據處理能力是作為大數據工程師的一些必備要素。舉例來說,現在人們在社交網路上所產生的許多記錄都是非結構化的數據,如何從這些毫無頭緒的文字、語音、圖像甚至視頻中拾取有意義的信息就需要大數據工程師親自挖掘。
二、數學及統計學相關的背景
國內BAT為代表的大公司,對於大數據工程師的要求都是希望是統計學和數學背景的碩士或博士學歷。缺乏理論背景的數據工作者,按照不同的數據模型和演算法總能捯飭出一些結果來,但如果你不知道那代表什麼,就並不是真正有意義的結果,並且那樣的結果還容易誤導你。只有具備一定的理論知識,才能理解模型、復用模型甚至創新模型,來解決實際問題。
三、特定應用領域或行業的知識
大數據工程師這個角色很重要的一點是,不能脫離市場,因為大數據只有和特定領域的應用結合起來才能產生價值。所以,在某個或多個垂直行業的經歷能為應聘者積累對行業的認知,對於之後成為大數據工程師有很大幫助。
G. 學習大數據需要什麼基礎
學習大數據需要的基礎:
學習大數據開發技術相關的開發技術知識體系是比較龐大的,對於大數據的學習來說學,確實邏輯思維能力是更重要的。基礎知識是可以通過學習進行彌補的,大數據培訓則成為小夥伴比較靠譜的學習方式。在大數據培訓班第一階段就是基礎內容的學習。
不同的大數據培訓機構在課程內容上側重點可能會有所不同,所以在培訓周期上也會有所差異。矽谷大數據培訓班,學習課程內容除了第一階段學習Java語言基礎之外,還要學習HTML、CSS、Java、JavaWeb和資料庫、Linux基礎、Hadoop生態體系、Spark生態體系等課程內容。
項目實戰對學習大數據的同學來說是一個必須經過的過程。學習大數據的同學只有經過項目實戰訓練,才能在面試和後期工作中從容應對,這是一個很重要的過程。
當然了,項目實戰訓練時間與項目的難度、項目的數量相關,項目難度較大、項目較多,當然學習的時間會更長。
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
H. 大數據是什麼意思 需要學什麼
大數據是巨量數據集合,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
大數據技術的學習內容有很多,包括:
基礎階段:Linux、Docker、KVM、MySQL基礎、Oracle基礎、MongoDB、redis。
hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、歷史,HDFS工作原理,YARN介紹及組件介紹。
大數據存儲階段:hbase、hive、sqoop。
大數據架構設計階段:Flume分布式、Zookeeper、Kafka。
大數據實時計算階段:Mahout、Spark、storm。
大數據數據採集階段:Python、Scala。
大數據商業實戰階段:實操企業大數據處理業務場景,分析需求、解決方案實施,綜合技術實戰應用。