導航:首頁 > 數據處理 > 為什麼說大數據來了

為什麼說大數據來了

發布時間:2023-01-21 22:21:11

① 人人都在說大數據,那大數據概念是怎麼產生的

概念產生:

「大數據」的名稱來自於未來學家托夫勒所著的《第三次浪潮》 盡管「大數據」這個詞直到最近才受到人們的高度關注,但早在1980年,著名未來學家托夫勒在其所著的《第三次浪潮》中就熱情地將「大數據」稱頌為「第三次浪潮的華彩樂章」。《自然》雜志在2008年9月推出了名為「大數據」的封面專欄。從2009年開始「大數據」才成為互聯網技術行業中的熱門詞彙。

② 大數據時代是什麼意思大數據是在什麼背景下提出的

大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

大數據產生背景:

進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。

它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。

數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。

正如《紐約時報》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。

哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。

(2)為什麼說大數據來了擴展閱讀

大數據時代的特徵

1、數據量大(Volume)

第一個特徵是數據量大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。

2、類型繁多(Variety)

第二個特徵是數據類型繁多。包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。

3、價值密度低(Value)

第三個特徵是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。

參考資料來源:網路-大數據時代

③ 為什麼說厚數據時代已經來臨

“數字會說話”可能是大數據時代最常見的口號,但唯一的現代統計預測是內特·西爾弗(Nate Silver)的提醒:“數字不會自己說話。”我們為他們說話。我們可能是一個有利的方式來解釋數據,使數據從客觀現實。”

為什麼說厚數據時代已經來臨?海量數據的時代已經到來了嗎?大數據不是簡單地由數據的數量或來源決定的,而是由“人”通過數據組合和交叉比較形成的“判斷”或“預測”。特別是在營銷領域,大數據是與人打交道,而不是與無生命的物體打交道。大數據營銷的背後是人們的行為模式和需求。因此,不可能僅僅根據數字或統計數字來作出判斷。更深入地思考品牌、產品和人之間的關系是有必要的,這種思考將是下一個厚數據時代的開始。

為什麼說厚數據時代已經來臨?海量數據的時代已經到來了嗎?所謂的厚數據不同於強調數據大小的大數據。厚數據更關注人、產品或行業數據之間的深度和背景。一個好的數據視圖通常來自於厚數據而不是大數據。“厚數據”強調需要有深厚的用戶背景,基於扎實的行業知識或經驗。通過密集的數據,工業產品和消費者之間的聯系更加緊密。

在未來,如果我們僅僅從現有的大數據中發現和判斷大數據,過於相信數字所呈現的結果很可能會導致誤判。如果能夠通過深入的使用語境來探究未來受消費者需求影響的行業發展趨勢,就可以體現出厚數據的重要價值。

厚數據時代已經來臨?沒有準備好的數據分析師將面臨這個,大數據不是單純由數據量或來源決定的,而是由“人”通過數據組合和交叉比較形成的“判斷”或“預測”。你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本站其他文章進行學習。

④ 什麼是大數據,通俗的講

大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,簡單來說大數據就是海量的數據,就是數據量大、來源廣、種類繁多(日誌、視頻、音頻),大到PB級別,現階段的框架就是為了解決PB級別的數據。

大數據的7大特徵:海量性,多樣性,高速性,可變性,真實性,復雜性,價值性

隨著大數據產業的發展,它逐漸從一個高端的、理論性的概念演變為具體的、實用的理念。

很多情況下大數據來源於生活。
比如你點外賣,准備什麼時候買,你的位置在哪,商家位置在哪,想吃什麼……這都是數據,人一多各種各樣的信息就越多,還不斷增長,把這些信息集中,就是大數據。

大數據的價值並不是在這些數據上,而是在於隱藏在數據背後的——用戶的喜好、習慣還有信息。

⑤ 大數據的意義

大數據的意義價值體現在以下幾個方面:

1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;

2、做小而美模式的中小微企業可以利用大數據做服務轉型;

3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

不過,「大數據」在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:「就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。」這確實是需要警惕的。

(5)為什麼說大數據來了擴展閱讀:

在這個快速發展的智能硬體時代,困擾應用開發者的一個重要問題就是如何在功率、覆蓋范圍、傳輸速率和成本之間找到那個微妙的平衡點。企業組織利用相關數據和分析可以幫助它們降低成本、提高效率、開發新產品、做出更明智的業務決策等等。例如,通過結合大數據和高性能的分析,下面這些對企業有益的情況都可能會發生:

1、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。

2、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。

3、分析所有SKU,以利潤最大化為目標來定價和清理庫存。

4、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。

5、從大量客戶中快速識別出金牌客戶。

6、使用點擊流分析和數據挖掘來規避欺詐行為。

⑥ 現在總說大數據時代,到底是什麼意思,指的是什麼。對我們的生活會有多大影響,詳解

大數據可以簡單理解為:

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。簡單的說就是超級存儲,海量數據上傳到雲平台後,大數據就會對數據進行深入分析和挖掘。

進一步簡單的說,大數據基本要具備以下三點:

1)有海量的數據;

2)有對海量數據進行挖掘的需求;

3)有對海量數據進行挖掘的技術和工具(比如常見的有hadoop、spark等)。

用這些數據做:數據採集、數據存儲、數據清洗、數據分析、數據可視化

大數據的應用對象可以簡單的分為給人類提供輔助服務,以及為智能體提供決策服務。

大數據不僅包括企業內部應用系統的數據分析,還包括與行業、產業的深度融合。具體場景包括:互聯網行業、政府行業、金融行業、傳統企業中的地產、醫療、能源、製造、電信行業等等。通俗地講「大數據就像互聯網+,可以應用在各行各業",如電信、金融、教育、醫療、軍事、電子商務甚至政府決策等。

⑦ 什麼是「大數據」,如何理解「大數據」

你好,大數據是指巨量的數據,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。

當下,大數據技術作為新興技術被許多互聯網大廠所需,以華為為例。

1、華為雲推出大數據稽核方案解決偷逃費

很多朋友可能發現,部分省界收費站變少而ETC通道在增加,高速公路的出行體驗比以前更加順暢。然而,在公眾體驗節省費用、便捷通行等利好的同時,高速公路的管理運營單位卻飽受新情況的困擾。

部分車主偷逃費方式多樣化,包括換卡逃費、車頭掛車分離逃費、倒換電子標簽、ETC車道跟車逃費等。同時偷逃費行為向專業化、團伙化演變,給高速運營單位帶來大量經濟損失和嚴峻挑戰。

以華為為例,華為給1-3年經驗的大數據開發工程師開到了高達4萬的月薪,在其他大廠的招聘中30k-60k的大數據開發工程師,也只要1-3年工作經驗,可以說大數據、雲計算仍是當下的紅利崗位。


希望我的回答對你有所幫助!

⑧ 怎麼理解現今時代是「大數據時代」

一切都可以以數據的形式表現出來,人們可以通過大數據手段做到許多曾經難以做到的事。

隨著信息技術的不斷發展,我們已經開始進入所謂的“大數據時代”。在這個時代當中,大資料庫對一切行為都有了一個數據化的表達,用量化的方式來分析我們生活中所遇到的一切。

這其實就是大數據在生活當中的表現,雖然我們還沒有意識到自己已經被影響,但是大數據確實無時無刻不在影響著人們的人生進程。

在生活可以被數據化的今天,大數據時代已經悄然來到。

⑨ 大數據時代,為什麼要使用大數據

大數據是什麼?是一種運營模式,是一種能力,還是一種技術,或是一種數據集合的統稱?今天我們所說的「大數據」和過去傳統意義上的「數據」的區別又在哪裡?大數據的來源又有哪些?等等。當然,我不是專家學者,我無法給出一個權威的,讓所有人信服的定義,以下所談只是我根據自己的理解進行小結歸納,只求表達出我個人的理解,並不求全面權威。先從「大數據」與「數據」的區別說起吧,過去我們說的「數據」很大程度上是指「數字」,如我們所說的客戶量,業務量,營業收入額,利潤額等等,都是一個個數字或者是可以進行編碼的簡單文本,這些數據分析起來相對簡單,過去傳統的數據解決方案(如資料庫或商業智能技術)就能輕松應對;而今天我們所說的「大數據」則不單純指「數字」,可能還包括「文本,圖片,音頻,視頻……」等多種格式,其涵括的內容十分豐富,如我們的博客,微博,輕博客,我們的音頻視頻分享,我們的通話錄音,我們位置信息,我們的點評信息,我們的交易信息,互動信息等等,包羅萬象。用正規的語句來概括就是,「數據」是結構化的,而「大數據」則包括了「結構化數據」「半結構化數據」和「非結構化數據」。關於「結構化」「半結構化」「非結構化」可能從字面上比較難理解,在此我試著用我的語言看能否形象點地表達出來:由於數據是結構化的,數據分析可以遵循一定現有規律的,如通過簡單的線性相關,數據分析可以大致預測下個月的營業收入額;而大數據是半結構化和非結構化的,其在分析過程中遵循的規律則是未知的,它通過綜合方方面面的信息進行模擬,它以分析形式評估證據,假設應答結果,並計算每種可能性的可信度,通過大數據分析我們可以准確找到下一個市場熱點。 基於此,或許我們可以給「大數據」這樣一個定義,「大數據」指的是收集和分析大量信息的能力,而這些信息涉及到人類生活的方方面面,目的在於從復雜的數據里找到過去不容易昭示的規律。相比「數據」,「大數據」有兩個明顯的特徵:第一,上文已經提到,數據的屬性是包括結構化、非結構化和半結構化數據;第二,數據之間頻繁產生交互,大規模進行數據分析,並實時與業務結合進行數據挖掘。解決了大數據是什麼,接下來還有一個問題,大數據的來源有哪些?或者這個問題這樣來表達會更清晰「大數據的數據來源有哪些?」對於企業而言,大數據的數據來源主要有兩部分,一部分來自於企業內部自身的信息系統中產生的運營數據,這些數據大多是標准化、結構化的。(若繼續細化,企業內部信息系統又可分兩類,一類是「基幹類系統」,用來提高人事、財會處理、接發訂單等日常業務的效率;另一類是「信息類系統」,用於支持經營戰略、開展市場分析、開拓客戶等。)傳統的商業智能系統中所用到的數據基本上數據該部分。而另外一部分則來自於外部,包括廣泛存在於社交網路、物聯網、電子商務等之中的非結構化數據。這些非結構化數據由源於 Facebook、Twitter、LinkedIn 及其它來源的社交媒體數據構成,其產生往往伴隨著社交網路、移動計算和感測器等新的渠道和技術的不斷涌現和應用。具體包括了:如,呼叫詳細記錄、設備和感測器信息、GPS 和地理定位映射數據、通過管理文件傳輸協議傳送的海量圖像文件、Web 文本和點擊流數據、科學信息、電子郵件等等。由於來源不同,類型不同的數據透視的是同一個事物的不同的方面,以消費客戶為例,消費記錄信息能透視客戶的消費能力,消費頻率,消費興趣點等,渠道信息能透視客戶的渠道偏好,消費支付信息能透視客戶的支付渠道情況,還有很多,如,客戶會否在社交網站上分享消費情況,消費前後有否在搜索引擎上搜索過相關的關鍵詞等等,這些信息(或說數據)從不同的方面表達了客戶的消費過程的方方面面。因此,一般來說,企業用以分析的數據來源越廣越全面,其分析的結果就越立體,越接近於真實。因此,大數據分析意味著企業能夠從不同來源的數據中獲取新的洞察力,並將其與企業業務體系的各個細節相融合,以助力企業在創新或者市場拓展上有所突破。針對「數據量」這個話題,亞馬遜CTO Vogels曾經說過,「在運用大數據時,你會發現數據越大,結果越好。為什麼有的企業在商業上不斷犯錯?那是因為他們沒有足夠的數據對運營和決策提供支持。一旦進入大數據的世界,企業的手中將握有無限可能。」可以預料,在不遠的未來,企業如何通過抓住用戶獲取源源不斷的數據資產將會是一個新的兵家必爭之地。在這個層面上,Facebook、Twitter、Google、Amazon,包括電信運營商等領先企業具有無可比擬的優勢。在大數據的領域里是否數據量越大越好?很多時候我們寫文章,並不是想要去重復某一個眾所周知的事實,而更多的是想從另外一個角度試圖去質疑那些已成事實的事實,並不是想要去推翻,而只是去看這個事實是否存在另外的可能性,雖然很多時候我的那些質疑會漏洞百出,並顯得幼稚可笑,但我覺得一個事物的健康發展需要不同的聲音,而這正是我們寫文章的意義所在。所以,我現在問題是,在大數據的領域里是否數據量越大越好?對於這個問題,我覺得應該分兩個層面來看,第一個層面是,對大數據這個整體而言,數據肯定是越大越好的,多元的數據能讓不同行業,不同組織都可以從大數據中尋找到解決問題的方法,也是基於此,現在越來越多的企業組織通過不同的終端、應用或者其他手段去瘋狂地收集多元的數據,大數據讓人們能有足夠的能力和視野將地球(包括地球上的一切)作為一個整體去看待,這是在從前無法想像的。第二個層面是,對於大數據的具體應用而言,數據量是否越大越好,我卻有不同的看法。我的理解是,在大數據的實際應用中你用以分析的數據量越大,你能得到的東西就越多,而至於得到的那些東西是否是你所需要的,或者對你是否有價值的,沒有人能保證。就如同樹林里有100條路,每條路上都有一些你覺得有意思的東西,如果你有足夠的時間,你可以走遍這100條路,收獲很多有意思的小東西,但不是每一條路都會讓你得到真正有價值的東西。經常做數據分析的朋友應該會有同感,在分析的過程中你會發現不同的數據通過不同的組合導入不同的分析模型會得到很多不同的結果,有時候會有一些很新鮮的結果被發現,這會讓你很驚喜,但大部分這些新鮮的結果最後只會出現在你的微博里,而不會出現在正式的分析報告中,因為分析報告是為解決某一具體問題而存在的,旁枝末節太多會顯得臃腫且容易混淆。所以,我認為,在大數據的具體應用面前,我們先要做的是把「大數據」這個概念忘掉,我們必須弄清楚到底想從大數據中得到什麼,然後帶著目的去收集有用的數據,輸入至分析模型中,直接導向我們想要的結果。否則你將花費大量時間、資源成本去獲取數據,分析數據。我們需要大數據應用是能夠幫助解決問題的行為洞察,而不是試圖研究每一條能夠得到的信息。不得不說,大數據的世界太魔幻了,裡面的誘惑很多,如果你不是帶著明確的目標去應用,你很有可能被陷入在五光十色的誘惑中無法自拔。即使你走進了一座金山,最後你能帶走的最多也只是你能提動的一小口袋。另外,這同時也揭示,為了避免應用者困在「大數據的金山」,大數據必須往下細化,針對不同行業不同領域的特定問題制定不同的解決工具,未來大數據將會遵循消費化模式,核心基礎設施將作為服務或應用程序來提供。

⑩ 都說現在是大數據時代,是什麼意思

現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。

大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。

大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。

(10)為什麼說大數據來了擴展閱讀:

最早提出大數據時代到來的是全球知名咨詢公司麥肯錫, 大數據在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。

大數據作為雲計算、互聯網之後又IT行業又一大顛覆性的技術革命。雲計算主要為數據資產提供了保管、訪問的場所和渠道,而數據才是真正有價值的資產。企業內部的經營信息、互聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,其數量將遠遠超越現有企業IT架構和基礎設施的承載能力,實時性要求也將大大超越現有的計算能力。

如何盤活這些數據資產,使其為國家治理、企業決策乃至個人生活服務,是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。

閱讀全文

與為什麼說大數據來了相關的資料

熱點內容
銀行卡如何修改手機號信息 瀏覽:15
飲料代理要什麼車送貨比較合適 瀏覽:926
現在市場上銷售的哪個牌子銀鱈魚 瀏覽:466
如何解決後台程序載入問題 瀏覽:934
飲料產品提供不了三證如何處理 瀏覽:422
工銀股混a基金如何交易 瀏覽:598
佛系操作期貨市場怎麼樣 瀏覽:659
沒有技術種桃怎麼辦 瀏覽:715
中國塑料管市場都在哪裡 瀏覽:826
手機上怎麼看速騰車輛信息 瀏覽:607
收到產品押金怎麼做分錄 瀏覽:1000
桂陽的人才信息網在哪裡 瀏覽:225
物聯網有什麼用啊關鍵技術有哪些 瀏覽:294
資料庫中的表名指什麼 瀏覽:720
其他產品成本如何計算 瀏覽:331
tipo是什麼產品 瀏覽:870
紅米手機恢復出廠後怎麼還原數據 瀏覽:97
轉賬收款的程序都有什麼 瀏覽:600
炒股交易操作多少次才會成熟 瀏覽:202
國盛期貨要下載哪個app交易 瀏覽:426