A. 大數據與人工智慧的關系是怎麼樣的
大數據與人工智慧相輔相成,一方面大數據的積累為人工智慧發展提供燃料,大數據具備數據規模不斷擴大、種類繁多、產生速度快、處理能力要求高、時效性強、可靠性要求嚴格、價值大但密度較低等特點,為人工智慧提供豐富的數據積累和訓練資源。
以人臉識別所用的訓練圖像數量為例,網路訓練人臉識別系統需要2億幅人臉畫像。
另一方面人工智慧推進大數據應用深化,在計算力指數級增長及高價值數據的驅動下,以人工智慧為核心的智能化正不斷延伸其技術應用廣度、拓展技術突破深度,並不斷增強技術落地(商業變現)的速度。
例如,在新零售領域,大數據與人工智慧技術的結合,可以提升人臉識別的准確率,商家可以更好地預測每月的銷售情況;在交通領域,大數據和人工智慧技術的結合,基於大量的交通數據開發的智能交通流量預測、智能交通疏導等人工智慧應用可以實現對整體交通網路進行智能控制。
在健康領域,大數據和人工智慧技術的結合,能夠提供醫療影像分析、輔助診療、醫療機器人等更便捷、更智能的醫療服務。同時在技術層面,大數據技術已經基本成熟,並且推動人工智慧技術以驚人的速度進步;產業層面,智能安防、自動駕駛、醫療影像等都在加速落地。
B. 大數據與AI深度融合,進入智能社會時代
大數據與AI深度融合,進入智能社會時代
什麼是人工智慧
人工智慧(AI)是研究、開發用於模擬、延伸和擴展人的理論、技術及應用系統的一門新技術科學。人工智慧分為計算智能、感知智能、認知智能三個階段。首先是計算智能,機器人開始像人類一樣會計算,傳遞信息,例如神經網路、遺傳演算法等;其次是感知智能,感知就是包括視覺、語音、語言,機器開始看懂和聽懂,做出判斷,採取一些行動,例如可以聽懂語音的音箱等;第三是認知智能,機器能夠像人一樣思考,主動採取行動,例如完全獨立駕駛的無人駕駛汽車、自主行動的機器人。
什麼是大數據
大數據(bigdata),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據是以數據為核心資源,將產生的數據通過採集、存儲、處理、分析並應用和展示,最終實現數據的價值。
大數據與人工智慧相輔相成
大數據的積累為人工智慧發展提供燃料。IDC、希捷科技曾發布了《數據時代2025》白皮書。報告顯示,到2025年全球數據總量將達到163ZB。這意味著,2025年數據總量將比2016全球產生的數據總量增長10倍多。其中屬於數據分析的數據總量相比2016年將增加50倍,達到5.2ZB(十萬億億位元組);屬於認知系統的數據總量將達到100倍之多。爆炸性增長的數據推動著新技術的萌發、壯大為深度學習的方法訓練計算機視覺技術提供了豐厚的數據土壤。
大數據主要包括採集與預處理、存儲與管理、分析與加工、可視化計算及數據安全等,具備數據規模不斷擴大、種類繁多、產生速度快、處理能力要求高、時效性強、可靠性要求嚴格、價值大但密度較低等特點,為人工智慧提供豐富的數據積累和訓練資源。以人臉識別所用的訓練圖像數量為例,網路訓練人臉識別系統需要2億幅人臉畫像。
數據處理技術推進運算能力提升。人工智慧領域富集了海量數據,傳統的數據處理技術難以滿足高強度、高頻次的處理需求。AI晶元的出現,大大提升了的大規模處理大數據的效率。目前,出現了GPU、NPU、FPGA和各種各樣的AI-PU專用晶元。傳統的雙核CPU即使在訓練簡單的神經網路培訓中,需要花幾天甚至幾周時間而AI晶元能提約70倍的升運算速度。
演算法讓大量的數據有了價值。無論是特斯拉的無人駕駛,還是谷歌的機器翻譯;不管是微軟的「小冰」,還是英特爾的精準醫療,都可以見到「學習」大量的「非結構化數據」的「身影」。「深度學習」「增強學習」「機器學習」等技術的發展都推動著人工智慧的進步。以計算視覺為例,作為一個數據復雜的領域傳統的淺層演算法識別准確率並不高。自深度學習出現以後,基於尋找合適特徵來讓機器識別物體幾乎代表了計算機視覺的全部圖像識別精準度從70%+提升到95%。由此可見,人工智慧的快速演進,不僅需要理論研究,還需要大量的數據作為支撐。
人工智慧推進大數據應用深化。在計算力指數級增長及高價值數據的驅動下,以人工智慧為核心的智能化正不斷延伸其技術應用廣度、拓展技術突破深度,並不斷增強技術落地(商業變現)的速度,例如,在新零售領域,大數據與人工智慧技術的結合,可以提升人臉識別的准確率,商家可以更好地預測每月的銷售情況;在交通領域,大數據和人工智慧技術的結合,基於大量的交通數據開發的智能交通流量預測、智能交通疏導等人工智慧應用可以實現對整體交通網路進行智能控制;在健康領域,大數據和人工智慧技術的結合,能夠提供醫療影像分析、輔助診療、醫療機器人等更便捷、更智能的醫療服務。同時在技術層面,大數據技術已經基本成熟,並且推動人工智慧技術以驚人的速度進步;產業層面,智能安防、自動駕駛、醫療影像等都在加速落地。
隨著人工智慧的快速應用及普及,大數據不斷累積,深度學習及強化學習等演算法不斷優化,大數據技術將與人工智慧技術更緊密地結合,具備對數據的理解、分析、發現和決策能力,從而能從數據中獲取更准確、更深層次的知識,挖掘數據背後的價值,催生出新業態、新模式。
C. 如何理解雲計算,大數據,物聯網,人工智慧之間的關系
物聯網、大數據、人工智慧、雲計算,作為當今信息化的四大版塊,它們之間有著本質的聯系,具有融合的特質和趨勢。
從一個廣義的人類智慧擬化的實體的視角看,它們是一個整體:物聯網是這個實體的眼睛、耳朵、鼻子和觸覺;而大數據是這些觸覺到的信息的匯集與存儲;人工智慧未來將是掌控這個實體的大腦;雲計算可以看作是大腦指揮下的對於大數據的處理並進行應用。
物聯網:大數據的基礎,記錄人、事、物及之間互動的數據;
大數據:基於物聯網的應用,人工智慧的基礎
雲計算:計算、存儲、通訊工具,物聯網、大數據和人工智慧必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術才能形成行業級應用。
人工智慧:大數據的最理想應用,反哺物聯網