『壹』 用python爬取網頁數據
用python爬取網頁數據就三步,用scrapy(爬蟲框架)
1. 定義item類
2. 開發spider類
3. 開發pipeline
如果有不會的,可以看一看《瘋狂python講義》
『貳』 如何爬取網頁表格數據
可以用軟體,找不到的話也可以自己針對網頁寫一個小軟體,進行數據抓取,一般要分析一下網頁結構,和數據存放,如果不會寫代碼的話,俺可以提供幫助
『叄』 如何應對網站反爬蟲策略如何高效地爬大量數據
一般有一下幾種
一些常用的方法
IP代理
對於IP代理,各個語言的Native Request API都提供的IP代理響應的API, 需要解決的主要就是IP源的問題了.
網路上有廉價的代理IP(1元4000個左右), 我做過簡單的測試, 100個IP中, 平均可用的在40-60左右, 訪問延遲均在200以上.
網路有高質量的代理IP出售, 前提是你有渠道.
因為使用IP代理後, 延遲加大, 失敗率提高, 所以可以將爬蟲框架中將請求設計為非同步, 將請求任務加入請求隊列(RabbitMQ,Kafka,Redis), 調用成功後再進行回調處理, 失敗則重新加入隊列. 每次請求都從IP池中取IP, 如果請求失敗則從IP池中刪除該失效的IP.
Cookies
有一些網站是基於cookies做反爬蟲, 這個基本上就是如 @朱添一 所說的, 維護一套Cookies池
注意研究下目標網站的cookies過期事件, 可以模擬瀏覽器, 定時生成cookies
限速訪問
像開多線程,循環無休眠的的暴力爬取數據, 那真是分分鍾被封IP的事, 限速訪問實現起來也挺簡單(用任務隊列實現), 效率問題也不用擔心, 一般結合IP代理已經可以很快地實現爬去目標內容.
一些坑
大批量爬取目標網站的內容後, 難免碰到紅線觸發對方的反爬蟲機制. 所以適當的告警提示爬蟲失效是很有必有的.
一般被反爬蟲後, 請求返回的HttpCode為403的失敗頁面, 有些網站還會返回輸入驗證碼(如豆瓣), 所以檢測到403調用失敗, 就發送報警, 可以結合一些監控框架, 如Metrics等, 設置短時間內, 告警到達一定閥值後, 給你發郵件,簡訊等.
當然, 單純的檢測403錯誤並不能解決所有情況. 有一些網站比較奇葩, 反爬蟲後返回的頁面仍然是200的(如去哪兒), 這時候往往爬蟲任務會進入解析階段, 解析失敗是必然的. 應對這些辦法, 也只能在解析失敗的時候, 發送報警, 當告警短時間到達一定閥值, 再觸發通知事件.
當然這個解決部分並不完美, 因為有時候, 因為網站結構改變, 而導致解析失敗, 同樣回觸發告警. 而你並不能很簡單地區分, 告警是由於哪個原因引起的.
『肆』 Python爬蟲:如何在一個月內學會爬取大規模數
爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。
掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。
對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……
但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。
在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。
1.學習 Python 包並實現基本的爬蟲過程
2.了解非結構化數據的存儲
3.學習scrapy,搭建工程化爬蟲
4.學習資料庫知識,應對大規模數據存儲與提取
5.掌握各種技巧,應對特殊網站的反爬措施
6.分布式爬蟲,實現大規模並發採集,提升效率
- -
學習 Python 包並實現基本的爬蟲過程
大部分Python爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。
Python爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。
當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。
- -
了解非結構化數據的存儲
爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。
開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。
當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。
- -
學習 scrapy,搭建工程化的爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。
- -
學習資料庫基礎,應對大規模數據存儲
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。
MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
- -
掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。
遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。
往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
- -
分布式Python爬蟲,實現大規模並發採集
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。
Scrapy 前面我們說過了,用於做基本的
『伍』 怎麼爬取網頁上的表格數據,導入到office的Excel或者Word文檔中呢
關於怎麼爬取網上的信息,有時候我們經常在網頁上看到很多表格數據,有些不能直接復制粘貼到文檔或者Excel表格中,有些能復制但是格式會發生很多錯亂,要是信息量大的話,修改格式都是一項大工程了。
舉個例子,之前有同學在網上看到一個表格數據:
要是我們直接復制很難把表格格式也復制進去,尤其對於一些每天都在變化的數據,也不能同步更新數據。
所以我們可以把網頁的數據用Excel表格, 導入網頁的鏈接實現表格數據爬取,同步自動更新表格數據
首先我們需要復製表格數據所在網頁的鏈接
然後打開Excel表格。
注意:Excel表格需要2016以上的版本才可以。
然後把我們剛才復制好的數據所在網頁鏈接粘貼進去,按確定
稍等片刻,就會自動獲取網頁所有表格數據,我們找到我們需要獲取的數據表格,然後點擊載入進Excel表格中。
載入到Excel表格中後,我們可以對外部數據進行編輯等其他參數調整
因為是直接獲取外部的鏈接數據,所以要是外部數據變化,我們也可以設置自定數據更新。
在表格屬性設計中找到刷新選項的查看鏈接屬性,然後可以自定義設置一些自動更新時間。
如下動態圖演示:
同時我們可以直接復制進Word文檔中,選擇性粘貼保留原格式,那麼也可以跟Excel和網頁數據實現同步更新了
『陸』 如何爬蟲網頁數據
爬取網頁數據原理如下:
如果把互聯網比作蜘蛛網,爬蟲就是蜘蛛網上爬行的蜘蛛,網路節點則代表網頁。當通過客戶端發出任務需求命令時,ip將通過互聯網到達終端伺服器,找到客戶端交代的任務。一個節點是一個網頁。蜘蛛通過一個節點後,可以沿著幾點連線繼續爬行到達下一個節點。
簡而言之,爬蟲首先需要獲得終端伺服器的網頁,從那裡獲得網頁的源代碼,若是源代碼中有有用的信息,就在源代碼中提取任務所需的信息。然後ip就會將獲得的有用信息送回客戶端存儲,然後再返回,反復頻繁訪問網頁獲取信息,直到任務完成。
『柒』 如何一個月入門Python爬蟲,輕松爬取大規模數據
scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。
『捌』 如何用爬蟲爬取網頁上的數據
用爬蟲框架Scrapy, 三步
定義item類
開發spider類
開發pipeline
如果你想要更透的信息,你可以參考《瘋狂python講義》
『玖』 如何爬取網頁表格數據
以下的工具來實現:
用offline explorer來批量下載網頁
用LAMP環境把網頁發布
用火車頭軟體建立網頁提取規則,從網頁中提取數據
『拾』 如何爬取網頁表格數據
用beautifulsoup4
resp = urllib.request.urlopen(yoururl).read().decode(「utf-8」)
soup = bs4.Beautifulsoup(resp)
soup.findall("table", {"width": "550"})[0]
然後做你想做的就行了。如果不懂語言,直接找某寶中的楚江數據,可以代寫爬蟲,也可以直接讓他們爬取數據。