❶ 商業數據分析的內容有哪些
第一作用:用數據說話
商業分析最大作用之一,用數據量化現狀,用清晰消除模糊。比如賣貨這件看似簡單的事,如果沒有數據,就只能籠統的說:感覺賣的還好。如果在交易系統對訂單ID、商品名稱、商品原價、商品實際交易價格、商品交易數量、參與優惠活動、付款用戶ID進行了記錄。就能很准確的知道:到底銷售金額是多少,到底哪些用戶來購買,到底商品賣了多少件。
除了直接記錄,還能基於以上數據做二次加工,衍生出更多的有價值信息。
第三作用:用數據尋因
這是人們通常認知的商業分析的作用1。需要注意的是,商業分析探索問題原因,不是單純依靠內部系統數據。比如銷售發生問題,往往是通過內部數據鎖定是什麼時候,什麼區域,什麼門店,什麼產品發生的問題,之後要換其他分析手段了。商品滯銷,很有可能是因為門店管理混亂、核心銷售流失、消費者不喜歡、競品在打壓,這些因素在內部是沒有數據記錄的。因此單純對著圖標很難得到結論,得通過市場走訪、員工訪談、消費者調研,競品對比,共同確認問題發生的真正原因。類似的,在營銷活動、運營計劃、生產供應等方面,都可以類似分析。
第四作用:用數據評估
這是人們通常認知的商業分析的作用*2。比如評估一個銷售的能力,不能光看銷售金額,還會考慮銷售回款,毛利,顧客服務滿意度,大客戶數量,違規(搶客、不規范報單、拆單)等等等。當評估維度一多,就得做綜合性評估。這時候可以用統計學方法,做專家評估或神經網路模型,壓縮評估變數,得出綜合分數,從而更好的判斷銷售能力。類似的,在產品、門店、供應商資質等方面,都可以類似評估。
第五作用:用數據預測
這是人們通常認知的商業分析的作用*3。比如預測銷售情況,對業務部、市場部、供應鏈、售後都很需要。銷售高峰,意味著供應鏈的供應、售後的服務都會成倍的增加工作量。銷售低谷,市場部就得想辦法做事情拉動銷量,業務部得努力抓執行。預測銷售利用統計學方法或機器學習方法都行,之後可以慢慢分享。需要注意的是,商業預測不同於農業、社會學、經濟學預測,商業環境本來就是瞬息萬變的。導致預測的根基更不牢靠,預測前提經常變化。因此商業預測更多是作為參照值,預測效果不如農業、社會學、經濟學那麼好。
❷ 服裝行業商品專員,都要做哪些數據分析依據什麼來分析請從事這個網崗位的朋友給以指點,萬分感謝!!!
依據什麼來分析?請從事這個網崗位的朋友給以指點,萬分感謝!!!_問題描述:有數據分析範本的最好,跪求!!!答案1:: 銷售報表如月報周報等,庫存率,消化率,同期對比等。主要就是在相同外部環境下對比目前貨品的銷售情況。依據就是銷售的數據,數據時從系統裡面來,系統裡面的數據由前台銷售之後錄入。提問者的評價:謝謝!答案2:: 常規的進銷存,SKU銷售情況,庫存調配等;分析本身不難,大公司會有ERP支持 追問 講具體一點,謝謝。 SKU是什麼?答案3:: SKU=指的是服裝的單款單色單碼,1個SKU就是1件貨品 :::::::::::::::::::請參考以下相關問題:::::::::::::::::::: 請問一下數據分析的前輩,我畢業想從事數據分析專員這個工作,請問... :::::::::::::::::::請參考以下相關問題:::::::::::::::::::: 互聯網公司的數據分析專員主要是什麼工作內容? :::::::::::::::::::請參考以下相關問題:::::::::::::::::::: 我想以後在服裝行業的從事銷售或商品數據分析工作,我現在大三,是... :::::::::::::::::::請參考以下相關問題:::::::::::::::::::: 數據處理專員干什麼的 :::::::::::::::::::請參考以下相關問題:::::::::::::::::::: 在服裝行業做商品專員/商品分析的工作,前景如何?謝謝!
❸ 數據分析指的是什麼
數據分析就是對數據進行分析。專業的說法,數據分析是指根據分析目的,用適當的統計分析方法及工具,對收集來的數據進行處理與分析,以求最大化地開發數據的功能,發揮數據的作用。數據也稱觀測值,是通過實驗、測量、觀察、調查等方式獲取的結果,常常以數量的形式展現出來。
數據分析要達到幫助管理者有效決策提供有價值信息,比如日常通報、專題分析等,這些就是數據分析具體工作的體現。而什麼時候做通報工作,什麼時候開展專題分析,這都需要我們根據實際情況做出選擇的。
數據分析的六種基本分析方法有:
1、構成分析法;2、同類比較分析法;3、漏鬥法;4、相關分析法;5、聚類分析法;6、分組分析法。
構成分析在統計分組的基礎上計算結構指標,來反映被研究總體構成情況的方法。應用構成分析法,可從不同角度研究投資構成及其變動趨勢,觀察投資構成與產業結構、社會需要構成的適應關系,可以揭示事物由量變到質變的具體過程。
❹ 數據分析,到底是分析什麼數據
對數據分析而言,其實有很多數據源可以使用。按常規分類來說,可以分為三類:外部數據、內部企業資產數據以及調研數據。
三、調研數據
通過調查問卷方式進行搜集數據,通常按照某個業務主題展開。
❺ 商品數據分析三個常用指標是什麼
商品數據分析三個常用指標有:
1、客流量、客單價分析:
主要指本月平均每天人流量、客單價情況,與去年同期對比情況。這組數據在分析門店客流量、客單價時特別要注重門店開始促銷活動期間及促銷活動前的對比分析,促銷活動的開展是否對於提高門店客流量、客單價起到了一定的作用。
(5)商品專業數據分析是什麼擴展閱讀
商品間接數據的組合分析方法
1、銷售綜合分析
銷售綜合分析的分析指標是銷售額、毛利額、毛利率、庫銷比、售罄率;分析條件是時間段(任意時間段、自然時間段)、經營方式;分析層次是總部,門店,大類,款式,價位帶,單品。
2、關聯分析(同比/環比分析)
將上一級分析的報表條件傳遞給同比分析,用同比分析的結構來檢驗我們對毛利調整策略的結果,看一下數據變化趨勢,以便進行下一階段的商品調整。
3、顧客數與客單價
有效提升銷售額的兩個途徑是:提高實現消費的顧客人數、提高每位顧客購買的金額數。有效顧客(即實現消費的顧客)數高,說明你的商品、價格和服務能吸引、滿足消費者的需求,客單價高,說明你的商品寬度能滿足消費者的一站式購物心理、商品陳列的相關性和連貫性能不斷地激發消費者的購買慾望。
❻ 零售業數據分析的商品分析
商品分析的主要數據來自銷售數據和商品基礎數據,從而產生以分析結構為主線的分析思路。主要分析數據有商品的類別結構、品牌結構、價格結構、毛利結構、結算方式結構、產地結構等,從而產生商品廣度、商品深度、商品淘汰率、商品引進率、商品置換率、重點商品、暢銷商品、滯銷商品、季節商品等多種指標。通過對這些指標的分析來指導企業商品結構的調整,加強所營商品的競爭能力和合理配置。
❼ 產品數據分析的內容有哪些
1、計劃
比如公司的采購計劃、訂貨計劃、上市計劃、營銷計劃、活動計劃、清貨計劃等等。計劃的要點是計劃的合理性,絕不是大門一關苦思冥想出來的。比如說訂貨計劃,我們需要考慮1-2年的同期數據,結合現在最新的市場信息來規劃。對不同的品類、價位、深寬度進行規劃。
2、反饋
公司的計劃出來了需要在不同的節點收集數據進行匹配,是否符合計劃預期。比如說原先的營銷計劃在時間A點的庫存率要求是50%。現在的數據是55%。比計劃高了,這樣的比較主要是進行預警用。避免發現的太晚。還有一類反饋是與計劃無關的。是常態的商品營銷信息反饋。
3、總結
每一季的結束或者一個月的結束商品需要做個總結。其實現在很多反映商品數據沒發揮作用的人來說他們做了太多的統計總結,但總結的結論卻不能夠用來做計劃。就行公司是不是的去做數據反饋,但是不能起到預警的作用。
❽ 電商數據分析是什麼
電商數據分析包括了大行業大平台的數據狀況,也可以是小到店鋪、單品、sku的某個某個維度詳細數據分析。
除了常規的商品型號、商品價格、促銷信息、店鋪名稱等,還可以自定義其他維度、可以說說是做到了全方位展現渠道違規行為,滿足多樣化的巡檢場景需求。
從流量、訂單、總體銷售業績、整體指標進行把控,起碼對運營的電商平台有個大致了解,到底運營的怎麼樣,是虧是賺。
電商分析數據方法如下:
一、依據用戶畫像,洞察需求
用戶畫像即用戶信息標簽化,通過收集用戶的社會屬性、消費習慣、偏好特徵等各個維度的數據,進而對用戶或產品特徵屬性進行刻畫,並對這些特徵進行分析、統計,挖掘潛在價值信息,從而抽象出用戶的信息全貌。
二、依據渠道數據分析用戶來源
對電商賣家來說,分析「訪客數」最重要的是分析「流量來源」。分析不同流量來源的「數量」和「支付轉化率」,找出「支付轉化率」比較高的流量來源並想辦法提高,不僅可以提高「訪客數」還可以提高整體的「支付轉化率」。
這時利用數據分析工具能為不同渠道的表現提供總覽,並給出目標轉化率。當涉及到有機搜索時,分析一些像搜索量和關鍵詞排名的指標能幫你獲得更多的見解,比如該將廣告預算花在哪兒,如何讓用戶更容易搜索到你等等。
三、店內轉化率的數據分析
當用戶來到店鋪時,我們就要想辦法將他們轉化成顧客,但眾所周知,並不是每個來店裡的用戶都會點加入購物車按鈕。甚至在加入購物車後,也會有改變主意離開網站的可能。所以這一步我們可以用下面的電商轉化指標來跟蹤和優化線上購物體驗:
1、銷售轉化率 ——已購買的用戶和全部來到店鋪的用戶比值。
2、平均訂單價值 —— 用戶下單的平均金額。
3、放棄購物車率—— 在所有產生的訂單中,未完成訂單的佔比。
四、提高營銷推廣的ROI
對店鋪來說,如今流量已進入存量時代,營銷渠道分散且復雜,更需要賣家依據數字化營銷提高推廣的RIO,通過數據分析,加強線上營銷的精準,拓展線下新的營銷場景,利用數據智能完成全場景全鏈路的布局,以達到高效轉化與品效相結合。
五、產品數據分析
1、產品數據分分析
①整體分析:分為兩個部分:銷售表現和購物行為。銷售表現包括各個商品帶來的收入,至少購買過一次的用戶數,平均訂單價格、數量,退款數目等等。購物行為,你可以看到瀏覽了產品詳情頁的用戶里,加入購物車的人數;或瀏覽產品詳情頁後最終下單的人數。
②購物行為分析——我們可以依據更多和商品有關的數據,比如商品瀏覽頁訪問量、商品詳情頁訪問量、加入/移出購物車的商品,進入結算階段的商品,以及購買人數來對用戶購物行為進行分析。
2、銷量數據分析
我們可以從後台數據分析中找到關於收入,稅費、運費、退款金額,和賣出的商品數量。其中,總銷售額以金額的形式呈現,是衡量我們線上店鋪經營狀況最佳的「整體主要指標」(OMM)之一,可以用它來衡量業務的整體增長和發展趨勢。
六、用戶留存數據分析
聰明的商家知道忠誠顧客的價值。能夠留住用戶給你長期帶來收入。永遠要記住的是,獲取新用戶比留住老用戶成本大得多。研究顯示,用戶留存率提升5%就能帶來25%到95%的利潤。
七、用戶推薦數據分析
對賣家來說,我們要識別出哪些用戶是你的真愛。他們不僅愛你的產品,也願意向家人和朋友推薦,他們簡直是你的品牌大使。成功的電商企業會密切關注著這一階段的指標並及時做出反應。