❶ 大數據應用成功的四個標准
大數據應用成功的四個標准
在大數據范疇大展拳腳肯定是個正確方向,同時世界各地的初創公司及企業巨頭也在借力大數據和大數據應用創造價值——將大量的數據處理轉化為金錢或競爭優勢。然而光彩的背後,總是掩飾著一些不可忽視的真相。簡而言之,不是所有在大數據上的嘗試都得到了應有的回報,而且遠非如此。同樣這里也有另一個不容忽視的真相,在IT企業界,大數據「成功」定義的標准非常寬松,甚至「我們並沒有完全失敗」這種的觀念都可以歸結於「成功」。
那麼大數據應用成功的標准究竟是什麼?10gen戰略副總裁Matt Asay帶來了他為成功總結的4個標准:
首先,必須要可以運作
大數據應該為行業創造切實的價值,不止是高科技。McKinsey在關於大數據未來的報告中指出,大數據在醫療、政府、零售以及製造產業上擁有萬億的潛在價值。機構對大數據的成功實現需要在一下幾個方面帶來切實的收獲:附加收益、提升客戶滿意度、削減成本等。
其次,必須有本質提高
大數據交付的不應該只是漸進式的商務模式改善,更應該是本質上的突破。比如就初創企業Foursquare來說,為了發現數據之間的關系,Foursquare使用了機器學習演算法讓系統可以建立「Explore」,一個社交推薦系統可以實時的給用戶推薦有價值的位置信息,使用新的業務模式去驅動位置信息類型業務。「Explore」依賴大數據技術,同時從多於3000萬個位置信息中獲取見解。現在Foursquare已經具備了理解人們之間如何進行互動的能力,並且位置信息也不只止步平台,而是真實世界。
再次,必須具備高速度
傳統資料庫技術會拉低大數據的性能,同樣也是非常繁瑣的,因為不管這項技術是否迎合你的需求,專利許可涉及到的企業繁瑣制度遠超出你的想像。一個成功大數據項目,使用的工具集和資料庫技術必須同時滿足數據體積及多樣性的雙重需求。論據是:一個Hadoop集群只需幾個小時就可以搭建,搭建完成後就可以提供快速的數據分析。事實上大部分的大數據技術都是開源的,這就意味著你可以根據你的需求添加支持和服務,同時許可不再是快速部署的阻礙之一。
最後,必須能以前所不能
在大數據出現之前,類似Gilt Groupe這種「限時搶購」公司根本不可能實現。限時搶購網站需要日處理上千萬用戶的登陸,並且會造成非常高的伺服器負載峰值——通過高性能、快速擴展的大數據技術讓這種商業模型成為可能。
總結
大數據部署成敗的關鍵不是系統每秒可以處理多少數據量,而是使用大數據後給公司業務帶來了多少價值以及是否讓業務有突破性的提升。專注業務類型,選擇適合公司業務的工具集才是該重點關注的領域。
❷ 大數據可視化需要遵循哪幾個原則
1.理解數據源
確保了解你工作的數據。這是理解數據至關重要的第一步。你需要對宏觀的全局有所理解:為什麼收集這些數據?公司對於這些數據賦予什麼樣的價值?用戶是誰?如何能讓數據作用最大化?深入理解這些問題,能為創造出既有意義又人性化的可視化信息,打下重要的基礎。
2.明確你要講的故事
好的數據可視化不僅僅是一張美麗的圖片,它還能講述一個任何人都能明白的故事。因此,至關重要的是,你首先需明確你想講的故事,然後將數據作為一種潤色故事的方式。
例如,我們最近幫助瑞典某移動運營商重新設計了之前經常讓用戶混淆的月度手機賬單,使其以用戶為中心便於用戶使用。該公司希望設計出更為有效易用的話單,而不是繼續呈現給用戶難懂的一串號碼。
3.簡單法則
數據可視化是用來告知用戶,而非讓用戶接收不需要的過載信息。作用一名設計者,你的角色就是專注簡單,將復雜或者零散的信息變得切實可行,易於理解,極具意義和更人性化的信息。記住,越簡單,用戶才能越明白。
4.巧用餅圖
試試在可視化中鍵入當前行為與你的理解。會讓你的設計被廣泛的用戶群體接受。餅圖被人們廣泛使用的原因在於:人們理解它表達的含義。這是一種天生優雅的可視化設計,因它有更大的影響力,且能使人們一看即懂。
5.一種設計驅動的方法
好的數據可視化不僅僅是設計上的傑作,也是幫助人們去解讀之前無法觸及的內容的一種極具價值的工具,並使這些內容賦有意義和指導性。
關於大數據可視化需要遵循哪幾個原則,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❸ 單純依據大數據預測做出決策需要遵循哪些原則
方法/步驟11.決策的原則決策原則是指決策必須遵循的指導原理和行為准則。它是科學決策指導思想的反映,也是決策實踐經驗的概括。領導決策過程中所需要遵循的具體原則是多種多樣的,如決策過程中的悲觀原則、樂觀原則、最小後悔值原則等等。但是,就領導決策的基本原則而言,有許多是共同的,這些一般原則主要有經濟性、系統性、預測性、可行性、靈活性、民主性等原則。22.經濟性原則經濟性原則,就是研究經濟決策所花的代價和取得收益的關系,研究投入與產出的關系。領導決策必須以經濟效益為中心,並且要把經濟效益同社會效益結合起來,以較小的勞動消耗和物資消耗取得最大的成果。如果一項決策所花的代價大於所得,那麼這項決策是不科學的。33.系統性原則系統性原則,也稱為整體性原則,它要求把決策對象視為一個系統,以系統整體目標的優化為准繩,協調系統中各分系統的相互關系,使系統完整、平衡。因此,在決策時,應該將各個小系統的特性放到大系統的整體中去權衡,以整體系統的總目標來協調各個小系統的目標。44.預測性原則預測是決策的前提和依據。預測是由過去和現在的已知,運用各種知識和科學手段來推知未來的未知。科學決策,必須用科學的預見來克服沒有科學根據的主觀臆測,防止盲目決策。決策的正確與否,取決於對未來後果判斷的正確程度,不知道行動後果如何,常常造成決策失誤。所以領導決策必須遵循預測性原則。55.可行性原則可行性原則的基本要求是以辯證唯物主義為指導思想,運用自然科學和社會科學的手段,尋找能達到決策目標的一切方案,並分析這些方案的利弊,以便最後抉擇。可行性分析是可行性原則的外在表現,是決策活動的重要環節。掌握可行性原則必須認真研究分析制約因素,包括自然條件的制約和決策本身目標系統的制約。可行性原則的具體要求,就是在考慮制約因素的基礎上,進行全面性、選優性、合法性的研究分析。
❹ 大數據應用須解決三大關鍵點
大數據應用須解決三大關鍵點
大數據應用的關鍵點是數據來源、產品化和價值創造;數據資源分布不均,大數據應用在數據密集領域更易獲得突破;須對不當的行業管理模式進行改革,以促進大數據在已有各個行業中應用。
大數據貴在應用。當前,在國家層面,國務院出台《促進大數據發展行動綱要》;在地方層面,大數據被作為區域發展戰略引擎;在企業層面,各類大數據概念公司方興未艾、蓬勃發展。我們獨關注大數據應用,關注數據從哪裡來、數據怎麼用、成果誰買單,也就是數據來源、產品化和價值創造三個關鍵點。一個好的大數據應用,從技術上可能很復雜,但從業務模式上應當簡單、直白、管用。我們還關注,是否存在若干"數據密集型"行業或領域,大數據應用在這些領域可能更容易開展。在產業政策方面,我們關注作為新興業態的大數據,過去屢試不爽的做法,如給地、給錢、給項目等,是否還會繼續有效?
大數據應用的三個關鍵點
國務院《促進大數據發展行動綱要》(簡稱《大數據綱要》)將大數據定位為"新一代信息技術和服務業態",賦予大數據"推動經濟轉型發展""重塑國家競爭優勢""提升政府治理能力"的戰略功能,並將數據界定為"國家基礎性戰略資源"。在應用方面,《大數據綱要》在公共領域提出許多發展方向,如宏觀調控科學化、政府治理精準化、商事服務便捷化、安全保障高效化、民生服務普惠化;在產業層面,主要按行業領域劃分為工業大數據、新興產業大數據、農業農村大數據、萬眾創新大數據,以及大數據產品體系和大數據產業鏈。這些方向,只是大數據應用的潛力和空間,能不能應用起來,能不能發揮作用,還得看有沒有可行模式和實際效果。無論是在公共領域還是在產業層面,大數據應用都離不開數據來源、處理技術和方法、創造價值的模式,這是我們關注的重點。概括來說,需要回答下面三個看似簡單、卻是關鍵的問題。(一)數據從哪裡來關於數據來源,普遍認為互聯網及物聯網是產生並承載大數據的基地。互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據金礦,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,如房地產交易、大宗商品價格、特定群體消費信息等。從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,也是當前在國內比較常見的應用資源。在國內還有一類是政府部門掌握的數據資源,普遍認為質量好、價值高,但開放程度低。《大數據綱要》把公共數據互聯開放共享作為努力方向,認為大數據技術可以實現這個目標。實際上,長期以來政府部門間信息數據相互封閉割裂,是治理問題而不是技術問題。面向社會的公共數據開放願望十分美好,恐怕一段時間內可望不可及。在數據資源方面,國內"小數據""中數據"應用並不充分,試圖一步跨入大數據時代,借機一並解決前期信息化過程中沒能解決的問題,前景並不樂觀。另外,由於中國互聯網公司業務主要在國內,其大數據資源也不是全球性的。數據從哪裡來是我們評價大數據應用的第一個關注點。一是要看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是"富礦"還是"貧礦",能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,如果一個應用沒有可靠的數據來源,再好、再高超的數據分析技術都是無本之木。(二)數據怎麼用數據怎麼用是我們評價大數據應用的第二個關注點。大數據只是一種手段,並不能無所不包、無所不用。我們關注大數據能做什麼、不能做什麼,現在看來,大數據主要有以下幾種較為常用的功能。追蹤。互聯網和物聯網無時無刻都在記錄,大數據可以追蹤、追溯任何一個記錄,形成真實的歷史軌跡。追蹤是許多大數據應用的起點,包括消費者購買行為、購買偏好、支付手段、搜索和瀏覽歷史、位置信息,等等。識別。在對各種因素全面追蹤的基礎上,通過定位、比對、篩選,可以實現精準識別,尤其是對語音、圖像、視頻進行識別,使可分析內容大大豐富,得到的結果更為精準。畫像。通過對同一主體不同數據源的追蹤、識別、匹配,形成更立體的刻畫和更全面的認識。對消費者畫像,可以精準推送廣告和產品;對企業畫像,可以准確判斷信用及風險。提示。在歷史軌跡、識別和畫像基礎上,對未來趨勢及重復出現的可能性進行預測,當某些指標出現預期變化或超預期變化時給予提示、預警。以前也有基於統計的預測,大數據大大豐富了預測手段,對建立風險控制模型有深刻意義。匹配。在海量信息中精準追蹤和識別,利用相關性、接近性等進行篩選比對,更有效率地實現產品搭售和供需匹配。大數據匹配功能是互聯網約車、租房、金融等共享經濟新商業模式的基礎。優化。按距離最短、成本最低等給定的原則,通過各種演算法對路徑、資源等進行優化配置。對企業而言,提高服務水平、提升內部效率;對公共部門而言,節約公共資源、提升公共服務能力。當前許多貌似復雜的應用,大都可以細分成以上幾種類型。例如,貴州推行的"大數據精準扶貧項目",從大數據應用角度,通過識別、畫像,可以對貧困戶實現精準篩選和界定,找准扶貧對象;通過追蹤、提示,可以對扶貧資金、扶貧行為和扶貧效果進行監控和評估;通過配對、優化,可以更好地發揮扶貧資源的作用。這些功能也並不都是大數據所特有的,只是大數據遠遠超出以前的技術,可以做得更強大、更精準、更快、更好。(三)成果誰買單成果誰買單是我們評價大數據應用的第三個也是最後一個關注點。道理很簡單,不創造價值的應用不是好應用。我們關注大數據的應用是否實實在在地提升了能力、改善了績效。如果大數據用於自身的產品設計、營銷推廣、資源配置,那就看企業競爭力是不是提升了,看企業最終是不是比以前更賺錢了。如果大數據用於為第三方提供服務,那就看是不是有人願意付費、願意持續付費。但如果是用於公共領域,還要看政府或公共部門的付費值不值,不僅僅是從出資方的視角看值不值,還要從老百姓的視角看值不值。當我們面對一項大數據應用時,只要簡單問一問上面三個問題--數據從哪裡來、數據怎麼用、成果誰買單,就能揭開許多"偽裝"。當然,如果經得起上述"大數據三問",也並非一定算得上優秀,卻也離優秀的大數據應用不遠了。尋找數據密集型領域既然大數據被視為一種資源,那就要考慮資源分布的問題。一般而言,資源分布是極不均勻的,如水、礦產、耕地、能源等自然資源;人力資源和知識的分布更是不均。大數據是否也存在分布不均的問題?發展大數據產業是否真的能彎道超車?這些問題值得深入思考。與可以探測的自然資源不同,數據資源分布難以定位和刻畫。不過,可以用大數據人力資源分布狀況來間接反映大數據應用在地區、行業間的差異,哪些行業、哪些地區大數據人力資源密集,這些行業和地區就可以看作是數據密集的。我們對兩家主流招聘網站"前程無憂"和"智聯招聘"2014年下半年以來發布的招聘信息進行篩選,得到兩家網站兩年來共發布相關信息涉及企業22.7萬家,職位100.7萬個,數據量確實足夠"大"。通過分地區、分行業進行匯總分析,結果顯示大數據人力資源分布極不均勻,各地區、各行業差異極大。不過,確切來說,通過招聘網站反映的是人才需求情況,並不是嚴格意義上的人力資源存量分布情況,但這兩者是緊密相關的。從大數據相關崗位工作地來看,北京、廣東、上海三地高度密集,遙遙領先於其他地區。三地相加,發布招聘信息企業數在兩家網站佔到52.35%和47.48%,職位數佔到61.23%和56.74%。可以推測,大數據人力資源的半壁江山都集中在這三個地方,這與我們平時的直觀感受是高度一致的。在這三個地方之外,我們關心是不是地方政府重視大數據產業、將大數據作為區域經濟發展引擎,就可能促進人力資源集聚,就可能超越與自己相似經濟發展水平的其他地區。從數據反映情況看,至少目前還看不到這樣的結果,這揭示出人力資源結構是後發地區發展大數據產業最需要彌補的短板和最難克服的困難。改變一個地方人力資源構成的難度要遠遠大於改變地面建築面貌,要麼需要一個長期的過程,要麼需要一個獨特的制度。即便在同一省份內,大數據人力資源分布也極為不均。例如在廣東,單深圳一市就大體佔到了全省的一半。再加上廣州,竟然能夠達到九成。其他地方,即使經濟實力不俗,但與深圳、廣州相比,在大數據人力資源方面相差甚遠。這再次表明,大數據人力資源分布是極不均勻的。顯然,大數據人力資源密集地區發展大數據產業的基礎要優於人力資源貧瘠的地區。從城市排名看,北上深廣可以視作大數據人力資源需求密集的一線城市,杭州、南京、成都、武漢、西安等可以看作二線城市。大數據人力資源分布與城市經濟實力、活力乃至房價水平都是大體一致的。從行業分布看,對大數據人力資源的需求分布更不均勻,主要集中在互聯網、信息技術及計算機相關行業。這充分說明了大數據是互聯網或IT產業的一部分,是在原有基礎上的新發展。這些行業是典型的"數據密集型"行業,是大數據產業發展的搖籃。金融是另一個特別重要的"數據密集"領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。除此之外,電信、專業服務(如咨詢、人力資源、財會)、教育培訓、影視媒體、網路游戲等,相對而言也是當前數據較為密集的行業。《大數據綱要》幾乎面面俱到地對所有行業和領域都規劃了大數據應用的廣闊前景,但數據資源分布極為不均,在"數據密集"領域的大數據應用,取得市場成功的可能性較大。大數據需要什麼樣的產業政策大數據應用需要什麼樣的產業政策?從應用的角度來看,大數據並非一個全新的產業,而是與已有產業融合,對已有模式的改造、升級和替代。制約大數據發展的往往並不是大數據本身,而是大數據所應用的行業和領域原本存在的問題,如行業管制、行政壟斷、要素不能自由流動,等等。因此,促進大數據發展,用給地、貼錢、上項目的方法,並不能解決根本問題。要從大數據應用領域角度,對不當的行業管理模式進行改革,對既有利益格局進行調整,使大數據應用具備必要的條件。即使在企業內部,大數據應用也不僅僅是個技術問題,而是涉及業務流程重組和管理模式變革,是對企業管理能力的一個考驗。金融、電信、教育、影視媒體等"數據密集型"行業,既是大數據應用潛力巨大的領域,也是迫切推進行業改革的重點領域。另一方面,大數據的應用也可以為行業改革提供技術支撐,能以更有效的技術路線實現行業發展目標。
大數據應用需要的產業政策其實就是市場經濟下各個行業發展所應有的政策,如放開准入、公平競爭、減輕企業負擔、消除企業所有制歧視、消除企業規模歧視,等等。只有在一個開放的產業環境中,大數據才能在這些產業得以有效運用。一個地方若要在金融、醫療、教育等領域大力推動大數據運用,最管用的政策就是對這些行業進行有力的改革。
❺ 管理上應用大數據時必須遵守的一個原則是什麼
在管理上應用大數據時必須遵守的一個原則就是,要一隻眼睛盯著數據,另一隻眼睛盯著人。你既要在商業運營的時候知道怎麼回事,明白產品如何設計、成本怎樣控制等這些物理數據,又要能夠洞察你的員工怎麼想、在不同的階段有什麼樣的需求等思維數據。
❻ 農夫山泉大數據管理應主要遵循哪些原則
農夫山泉大數據管理應主要遵循利用大數據提升精益化管理水平的原則。
1、建立大數據管理系統,提升綜合管理水平。隨著互聯網技術、計算機技術以及信息技術的快速發展,海量信息資產已成為企業越來越重要的資產了,大數據時代的來臨,對企業來說既是機遇,也是挑戰,這將改變企業的管理理念和策略制定方式,沒有數據分析支撐的決定將越來越不可靠。人們的決策行為不再像過去那樣憑借經驗來做出,而是通過數據分析來得出科學結論,因此,企業應該重視各自信息資產的價值,基於企業實際情況建設有效的大數據收集、傳遞和處理系統。例如在SAP團隊為農夫山泉設計的大數據處理信息系統中,農夫山泉在全國的一萬多名業務人員每人每天要在15個數據採集點各拍攝10張圖片,水怎麼擺放,位置有什麼變化,高度如何等,並及時傳回杭州總部。通過大數據的管理和應用,農夫山泉在飲用水細分市場快速超越了原先的行業三甲:娃哈哈、樂百氏和可口可樂。一個有效的大數據管理系統,不但應當具備及時搜索、分析和整合數據的能力,還應該能夠探索數據中隱藏的風險或價值,並迅速制定精確可行的行動方案,實現由數據引領決策的目的。
2、發揮大數據價值,使人力資源管理更科學化。大數據時代下,企業人力資源管理部門面臨著全新的形勢和任務,新形勢下傳統管理方式已經難以適應時代發展的步伐,必須要轉變工作視角,採用全新方法來進行科學高效地分析。大數據本身是具有強大優勢的工具,在企業人力資源管理過程中應該高度重視大數據價值的發揮,要結合企業自身的實際情況來不斷提升人力資源管理水平。在實際工作過程中就是要加強兩方面的工作,一方面是數據的挖掘,在大數據時代背景下,人力資源管理的第一步就是要搜集數據,要全面地搜集關於勞動者的各種真實數據信息,這些真實數據應該包含員工的原始資料信息以及經過科學分析基礎的信息,搜集數據是一項十分重要的工作,在實際工作中應該堅持事無巨細的原則。另一方面是數據的分析,在獲得海量的信息資產後,數據就像一個鑽石礦,當它的首要價值被發掘後仍能不斷給予。其實數據的價值絕大部分都隱藏在表面之下,真實價值就像漂浮在海洋中的冰山,這時應該注重數據的分析,在大數據這種新形勢下,只有不斷加強數據技術的研究,應用大數據技術來進行有針對性地人力資源管理,才能適應時代發展的要求,有效提升管理水平。
3、應用大數據時代,提升財務管理水平。經過幾十年的迅猛發展,互聯網技術和通訊技術早已今非昔比,SAP,Oracle,IBM等大數據處理服務供應商提供的商業軟體已經在實踐中得到成功的運用,這是歷史上不曾有過的商業環境,所有企業都獲得了以合理成本取得處理大數據能力的機會。在這樣的環境下,要培育決策層的大數據管理意識,加強組織領導工作,從根本上樹立企業的大數據意識,基於企業實際情況建立有效的大數據收集、傳遞和處理系統,建立科學的財務管理績效考核機制和內部審計制度。在大數據時代,只有充分認識到數據資源作為一種新型財務資源的重要性,相應調整財務管理工作並有效管理數據資源,才能在商業競爭中獲得持續的競爭力。
❼ 大數據和ai能力開放總體原則是什麼
幫助人類。大數據和ai能力開放的總體宗旨是方便人類進行工作,因此宗旨是幫助人類。大數據,或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過主流軟體工具。
❽ 影響大數據項目成功的因素都有哪些
一般說來,一個大數據項目是否成功,取決於以下幾個因素:
數據的完整獲取——要做到這一點是很難的,尤其是對於大型集團母公司、機關單位主導的項目而言;
項目主體領導層的支持——這里說的支持,一定是徹底的支持,而不是最開始興趣盎然,後期新鮮勁過了就不了了之;
對項目目標的深刻理解——項目做起來是做什麼?數據的價值在哪裡?這些都是要想清楚的,要基於業務來深層次考慮,不能拍腦袋決策;
控製成本——永遠要考慮成本,考慮性價比,這樣項目才能長久;
注重可視化——數據可視化,是項目呈現出來的形,人都是嚮往美好事物的,好的視覺效果,也是保證項目成功的關鍵。
❾ 大數據時代的商業法則
大數據時代的商業法則
大數據時代給企業帶來了前所未有的商機,在大數據時代,企業必須學會利用大數據精確地分析、導入用戶、促成交易,並用最有效率的方式組織生產。在大數據時代,企業必須遵循新的商業法則,否則就會被大數據的浪潮所淹沒。法則1:解讀用戶的真實需求 解讀用戶的真實需求,就是通過數據的收集、分析挖掘出用戶內心的慾望,提高企業產品推送的成功率,並將其轉化為企業的訂單。
大數據看似神秘莫測,其實在解讀用戶需求上的操作思路卻極其簡單,即盡可能掌握用戶的個人信息和關注信息。當關注信息指向個人時,就能夠相對精準地定義出用戶的需求。
在這一過程中,主要的操作模式有兩種:靜態輻射模式和動態跟蹤模式。
靜態輻射模式
靜態輻射模式的數據分析在一個時間節點上進行,盡量擴大分析對象,並用標簽來篩選出最可能成交的用戶。這是大數據應用中最典型的一種模式。由於一些大企業主動會進行用戶標簽的管理,需要大數據助力營銷的企業就可以「借船出海」。
標簽與購買的關系有兩種:一類標簽與購買的關系非常明顯。例如,一個常常瀏覽經管類書籍的用戶一定是這類書籍的潛在購買者。
另一類標簽與購買的關系卻並不十分明顯。這就需要企業提前進行分析,有時還需要藉助第三方專業機構的分析結果。
例如,新浪微博會根據用戶平時的瀏覽和表達為用戶貼上「標簽」。但是,這些標簽與有些購買行為之間的關系就並不明顯。金夫人是國內婚紗攝影巨頭,他們首先利用自己作為網路大客戶的身份,無償獲取了網路提供的婚紗攝影客戶調研分析數據,發現美食、影院等標簽的用戶最有可能購買婚紗攝影產品。利用這一跨資料庫的結果,金夫人在新浪微博的平台上鎖定了「年齡20~35左右的某地區女性」群體,加上了美食、影院等標簽,精準鎖定了高轉化可能的用戶,並購買了平台提供的「粉絲通」服務,對他們進行定向廣告推送。一般來說,推送5~6萬個用戶大約會得到70~80個電話咨詢,這種轉化過來的電話咨詢顧客被稱「顧客資源」,從顧客資源到最後的成單,轉化率優異,大約在40%。
動態跟蹤模式
動態跟蹤模式的數據分析在一個時間周期內進行,盡量縮小分析對象,不斷通過用戶的行為來為用戶貼上標簽,伺機發現產品推送的時點。由於這種分析針對小群體,無法由第三方機構提供統一的規模化服務,所以,對於企業來說是有高門檻的,需要企業練好內功。這種模式中,企業對於用戶不斷產生的新數據,要進行隨時跟蹤,並隨時在雲端進行處理。
例如,Target超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確地推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對地在每個懷孕顧客的不同階段寄送相應的產品優惠券。在一個個例中,他們居然比用戶更早知道了她懷孕的信息。
又如,亞馬遜基於自己對用戶的了解來進行精準營銷,在網站上的推薦和電子郵件對於產品的推送成為了促進成交的利器。調研公司Forrester分析師蘇察瑞塔·穆爾普魯稱,根據其他電子商務網站的業績,在某些情況下,亞馬遜網站推薦的銷售轉化率可高達60%。這一轉化率遠遠高於其他電子商務網站,難怪一些觀察員將亞馬遜的推薦系統視為「殺手級應用」。最新的消息顯示,亞馬遜已經注冊了「未下單、先發貨」的技術專利,這是更加精準的需求預判和更加直接的產品推送,他們對於大數據的應用已經是爐火純青!
法則2:形成社會化協作的生產安排
如果能依靠大數據進行產品推送實現購買,海量需求就會從互聯網洶涌而來。這意味著產品的數據增多、涉及原料增多、消費者零散下單……這一變化使得工業時代標准化的產品生產模式受到前所未有的顛覆,生產端需要基於大數據形成前所未有的柔性,來對接消費端的柔性。
互聯網商業環境對價值鏈提出了新的挑戰:鏈條上的采購、生產、物流、分銷、零售各環節中,除了生產之外的其他環節也需要強大的數據處理能力,各個環節的數據處理系統和數據本身必須是共享的,而且,這些系統和內容還必須向全社會開放。要達到這種要求,顯然應該應用價值鏈接網,並用大數據來進行生產協調。
大數據的確給價值鏈重塑帶來了機會。在工業經濟時代,生產更多地通過「規模經濟」來獲利,大規模標准化的生產最大程度地降低了單位成本。但在互聯網經濟時代,生產更應該通過「范圍經濟、協同效應和重塑學習曲線」來獲利,因為,多種類、小規模的生產需要價值鏈上的靈動協作。
基於互聯網這樣一個平台,所有的價值鏈環節可以實現數據共享和集中處理。另外,因為使用統一的數據構架,所以不會出現數據孤島,浪費有價值的數據。由此,價值鏈各個環節之間可以無縫鏈接,實現最敏捷、最合理的生產。基於互聯網這樣一個平台,企業入圍合作即可以獲得充分的信息,也不再會遭遇太高的學習門檻。更厲害的是,用戶參與生產也變得容易,模塊化的選擇題,讓業余者也可以發出專業的需求信號。由此,從始端原料的生產者到終端的消費者,全部都被植入了價值鏈(或稱為價值網),社會化協作得以真正實現。而在大數據出現以前,這幾乎是不可能的!
順應法則贏未來
獨具特色的大數據商業法則,將會引發未來商業格局的變化。未來的贏家,將屬於能夠適應新的商業法則和新的商業邏輯的代表者。
在用大數據掘金的世界,誰掌握大數據,並能利用大數據實現上述兩大商業法則的變革,誰就能贏得未來。
因此,我們可以肯定地判斷出,掌握了大數據的資源整合類企業,將會成為大數據時代的企業贏家。這類企業是商業生態(價值網)中的「舵手」,通過靈敏地識別市場需求,指揮網路成員協同生產,獲得組合創新優勢。由於控制了整個網路,此類企業擁有網路收益的剩餘索取權,往往獲利最為豐厚。工業經濟時代,企業是依賴品牌、聲譽和社會資本實現資源整合。互聯網時代,資源變得無限豐富,協作變得極度頻繁,企業更需要依靠大數據來發現需求、整合資源。可以這樣說,掌握了大數據,這類企業就知道「用戶要什麼,哪裡有什麼,如何用資源去滿足用戶需求」。
未來的資源整合企業將基於大數據來運作。維克托·邁爾·舍恩伯格等人在《大數據時代》中,將基於大數據的資源整合企業分為三種:第一種是掌握數據的企業,這類企業掌握了埠,掌握了數據的所有權;第二種是掌握演算法的企業,負責處理數據,挖掘有價值的商業信息,這些企業被稱為「數據武士」;第三種是掌握思維的企業,他們往往先人一步發現市場的機會,他們既不掌握數據技能,也不掌握專業技能,但正因為如此才有廣闊的思維,能夠最大程度串聯資源,形成商業模式,他們相當於「路徑尋找者(pathfinder)」。
按照各自生產要素的價值性和稀缺性,很難說哪類企業真正將在大數據的商業模式中獲益,三類企業各自有各自的貢獻,各自有各自的稀缺之處。
ITASoftware是美國四大機票預訂系統,是一個典型的掌握數據的企業,其將數據提供給Farecast這家提供預測機票價格的企業,後者是一個典型的掌握演算法和思維的企業,直接接觸用戶。結果,ITA Software僅僅從這種合作中分得了一小塊收益。
Overture是搜索引擎付費點擊模式的鼻祖,如果把谷歌看作是媒體,那麼Overture則是相當於廣告代理公司,通過演算法細分不同的瀏覽用戶,向廣告投放企業提供目標用戶的付費點擊(選出他們最需要的用戶)。Overture是典型掌握演算法和思維的企業,雅虎、谷歌則是掌握數據的企業。事實上,谷歌的兩大金礦AdWords和AdSense技術,都是借鑒了Overture的演算法。但是,Overture不能直接接觸到用戶,沒有數據,喪失了話語權,只能獲得少量收益,以至於最後被雅虎收購。
基於大數據的資源整合類企業,它們的生態鏈又將遵循兩個法則。
法則一:接觸用戶的企業總是能夠獲得最多的收益,這和價值鏈上的分配原則是高度一致的。終端價格和原料供應之間的差價全部是由售賣終端產品的企業獲取的。
法則二:掌握數據的企業具有這個商業生態內最大的議價能力,最終最有可能成為贏家。演算法可以攻克,也可以購買,事實上,擠入這個行業的企業並不在少數。而思維則存在一種肯尼斯·阿羅所說的「信息悖論」,即信息在被他人知曉前都價值極高,但卻無法被證實。一旦公開證實它,又因所有人都知道而失去了價值。所以,不管思維和演算法企業走得多快,只要數據企業隨時可以封鎖數據源,就依然把握著「殺手鐧」。甚至,有的數據企業在看不清楚商業模式時,將數據釋放讓思維和演算法企業進行試錯,而一旦試錯成功,則收回數據所有權,模仿其商業模式。
BAT的數據帝國
因此,我們可以說,在大數據時代,資源整合企業的競爭,將會決定未來商業世界的版圖。
在很多人還沒有弄清楚大數據時代的商業法則時,國內互聯網三巨頭BAT(網路、阿里、騰訊)已經在迅速地構建自己的「數據帝國」。
在互聯網的大世界中,用戶有諸多的入口,可以通過不同的APP上傳數據。BAT的原則是,有關吃穿用住行的一切服務商,只要能夠增加他們的數據種類和質量,他們通通拿下。這里,體現出一種典型的「數據累積的邊際收益遞增效應」,即每多增加一個單位的數據,可挖掘的價值就有一個加速的增長,每增加一個種類的數據,可挖掘的價值就有一個加速的增長。某些時候,BAT甚至根本不考慮數據在現階段能否變現為收益,僅僅是納入麾下,等待未來的開發。
現實的情況是,經過了幾輪的收購之後,BAT基本上覆蓋了吃、穿、用、住、行、社交等各個領域的數據入口,加之其原來的龐大數據入口,在數據規模上的優勢已經無與倫比。短時間內,任何企業想要超越他們,幾乎都是不可能的。
BAT不僅是在做掌握數據的企業,也是在做掌握演算法和思維的企業。一方面,擁有龐大的商業用戶群和擁有用戶群消費偏好的大數據,只要具有相應的內容,就可以形成成交、獲取收益。另一方面,他們甚至可以開放應用程序介面(APIs)把自己掌握的數據授權給別人使用,這樣數據就能夠重復產生價值。這方面,阿里巴巴的百川計劃就是一個典型。簡單來說,他們向其他廠商的APP免費開放數據,但他們不收費,僅僅需要他們回饋數據作為代價。這個計劃實施以後,所有的APP都會是他們的入口。
可以說,BAT的帝國是基於數據建立的。甚至有人預言,數據作為「表外資產」一定會在某個時候被會計准則納入。因為,相對於無形資產,這種資產的價值更大。
值得一提的是,傳統工業經濟思維的人根本看不懂大數據時代的商業邏輯。某學者曾對阿里巴巴的收購(零售、文化、金融等)提出過質疑,他列舉蘋果和谷歌收購的案例,認為他們都是在進行專業領域的收購,這是有利於增強競爭力的,但阿里進行的都是多元化收購,是不利於增強競爭力的。
實際上,這是沒有看懂阿里巴巴商業模式的表現。互聯網時代的大多數商業模式,早就脫離了行業的限制,而在某種程度上走向了「大一統」,即「導入流量+大數據分析變現流量」。這種模式里數據就是通用的邏輯,難怪在大數據出現時,維克托·邁爾·舍恩伯格等人就斷言,行業專家和技術專家的光芒會被數據專家掩蓋住,因為後者不受舊觀念的影響,能夠聆聽數據發出的聲音。
盡管BAT強悍如斯,但在他們的夾縫中,仍然有一些商機,企業也可以搭建入口、解讀需求、安排生產。如果說大數據改造商業的神奇已經毋庸置疑,那為何眾多企業依然拿不起放在眼前的這把金鑰匙?很大程度上是因為這些企業缺乏數據基因。
大數據和互聯網經濟的來襲,使得企業只能「被動接網」。面對海量的潛在需求,不僅無法解讀,也無法調動生產進行對接。這就出現了大量企業被互聯網的海量需求「反噬」,並導致供應鏈失控的案例。
在大數據時代,企業規模、資金、生產技術不再重要,品牌也不再擁有神力。獲取數據、分析處理數據、挖掘數據價值的能力成為企業的立身之本。目前我國大部分企業還沒有意識到我們已經進入大數據時代,就像我們大多數消費者沒有意識到我們的消費行為隨時在被計算一樣。在這樣的一個時代,只有建立在數據之上的企業、按照大數據時代的商業法則運營的企業才能更好地生存。
以上是小編為大家分享的關於大數據時代的商業法則的相關內容,更多信息可以關注環球青藤分享更多干貨