A. 數據分析師需要學那些東西
數據分析師需要學習以下幾個方面的課程:
(1)數據管理。
a、數據獲取。
企業需求:資料庫訪問、外部數據文件讀入
案例分析:使用產品信息文件演示spss的數據讀入共能。
b、數據管理。
企業需求:對大型數據進行編碼、清理、轉換。
案例分析:使用銀行信用違約信息文件spss相應過程。
1)數據的選擇、合並與拆分、檢查異常值。
2)新變數生成,SPSS函數。
3)使用SPSS變換數據結構——轉置和重組。
4)常用的描述性統計分析功能。頻率過程、描述過程、探索過程。
c、數據探索和報表呈現。
企業需求:對企業級數據進行探索,主要涉及圖形的使用。spss報表輸出。
案例分析:企業績效文件,如何生成美觀清晰的報告。
1)製作報表前對變數的檢查
2)製作報表的中對不同類型的數據處理
3) 報表生成功能與其他選項的區別
(2)數據處理
a、相關與差異分析。
案例分析:產品合格率的相關與差異分析。
b、線性預測。
企業需求: 探索影響企業效率的因素,並進一步預測企業效率。
案例分析:產品合格率的影響因素及其預測分析。
c、因子分析。
企業需求: 需要抽取影響企業效率的主要因素,進行重點投資
案例分析:客戶購買力信息研究。
d、聚類分析。
企業需求: 需要了解購買產品的客戶信息
案例分析:客戶購買力信息研究
e、bootstrap。
案例分析: bootstrap抽樣。
(3)SPSS代碼
SPSS代碼應用
B. 數據分析需要掌握些什麼知識
統計學,數學,邏輯學是數據分析的基礎,是數據分析師的內功,內功不扎實,學再多都是徒勞。
掌握統計學,我們才能知道每一種數據分析的模型,什麼樣的輸入,什麼樣的輸出,有什麼樣的作用,開始我們並不一定要把每個演算法都弄懂。
如果我們要做數據挖掘師,數據能力是我們吃飯的飯碗。
如果你沒有數學能力,用現成的模型也好,模塊也好,也能做,但一定會影響你的技術提升,當然更影響你的職位晉升。
業務方向
大家在招聘網站中搜索數據分析的職位,大概分為兩類:輔助業務的數據分析職位和數據分析師職位。
1)輔助業務的數據分析:一般在零售業里職位設置較多,該職位一定要對業務爛熟於心,對業務有長時間的積淀和理解,用數據發現業務流程中的問題,並提出合理化的解決方案,分析數據是為整個商業邏輯去做支撐。細分職位包括:市場調查、行業分析和經營分析三類。
2)數據分析師:業務方向的數據分析師,該職位招聘時一定前面有一個限定詞,什麼數據分析師,歸結起來分為三類:產品數據分析師,運營數據分析師和銷售數據分析師。
技術方向
技術方向主要指數據挖掘方向,分為三類:數據挖掘工程師(機器學習)、數據倉庫工程師(構架師)和數據開發工程師。在互聯網和金融行業崗位設置較多
普遍來說:技術方向的基礎崗的工資薪酬要比業務崗的薪酬高一個等級,但是做到管理崗的話,在中國,業務崗的薪酬比技術崗的薪酬要高。
C. 數據分析需要掌握哪些知識
1)具有業務敏感度,反應迅速,能夠良好溝通;
2)具有數據分析和數據倉庫建模的項目實踐經驗;
3)3年及以上數據分析經驗,有互聯網產品、運營分析經驗;
4)熟悉R、SAS、SPSS等統計分析軟體,熟練運用Python,熟練使用 SQL、Hive等;
5)本科或以上學歷,數學、統計、計算機、運籌學等相關專業;
那麼對於正在入門階段的同學們應該如何正確把握自己的學習方向呢?
從學科知識來看,數據分析涉及到一下的知識要點:
(1)統計學:參數檢驗、非參檢驗、回歸分析等
(2)數學:線性代數、微積分等
(3)社會學:主要是一些社會學量化統計的知識,如問卷調查與統計分析;還有就是一些社會學的知識,這些對於從事營銷類的數據分析人員比較有幫助
(4)經濟金融:如果是從事這個行業的數據分析人員,經濟金融知識是必須的,這里就不多說了
1)數據分析報告類:Microsoft Office軟體等,如果連excel表格基本的處理操作都不會,連PPT報告都不會做,那我只好說離數據分析的崗位還差的很遠。現在的數據呈現不再單單只是表格的形式,而是更多需要以可視化圖表去展示你的數據結果,因為數據可視化軟體就不能少,BDP個人版、TABLUEA、Echart等這些必備的
(2)專業數據分析軟體:常見的有諸如SPSS、SAS、Matlab等等,這些軟體可以很好地幫助我們完成專業性的演算法或模型分析,還有高級的Python、R等。
(3)資料庫:hive、hadoop、impala等資料庫相關的知識可以學習;
(3)輔助工具:比如思維導圖軟體(如MindManager、MindNode Pro等)也可以很好地幫助我們整理分析思路。
希望同學們謹記:理論知識+軟體工具+數據思維=數據分析基礎,最後要把這些數據分析基礎運用到實際的工作業務中,好好理解業務邏輯,真正用數據分析驅動網站運營、業務管理,真正發揮數據的價值。
。
D. 數據分析需要學哪些
1、數學知識
數學知識是數據分析師的基礎知識。對於初級數據分析師,了解一些描述統計相關的基礎內容,有一定的公式計算能力即可,了解常用統計模型演算法則是加分。
對於高級數據分析師,統計模型相關知識是必備能力,線性代數(主要是矩陣計算相關知識)最好也有一定的了解。
2、分析工具
對於初級數據分析師,玩轉Excel是必須的,數據透視表和公式使用必須熟練,VBA是加分。另外,還要學會一個統計分析工具,SPSS作為入門是比較好的。
對於高級數據分析師,使用分析工具是核心能力,VBA基本必備,SPSS/SAS/R至少要熟練使用其中之一,其他分析工具(如Matlab)視情況而定。
3、分析思維
比如結構化思維、思維導圖、或網路腦圖、麥肯錫式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、資料庫知識
大數據大數據,就是數據量很多,Excel就解決不了這么大數據量的時候,就得使用資料庫。如果是關系型資料庫,比如Oracle、mysql、sqlserver等等,你還得要學習使用SQL語句,篩選排序,匯總等等。非關系型資料庫也得要學習,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起碼常用的了解一兩個,比如Hbase,Mongodb,redis等。
5、開發工具及環境
比如:Linux OS、Hadoop(存儲HDFS,計算Yarn)、Spark、或另外一些中間件。目前用得多的開發工具Java、python等等語言工具。
數據分析師就業前景
在被視為「數據元年」的今天,數據分析師以待遇優厚和地位尊崇而聞名國際,曾被Times時代雜志譽為「21世紀最熱門五大新興行業」。今天,國內數據分析行業專業人才每年以千位數非速增長著,同期各行業領域空缺崗位已達近二十萬,未來中國對數據分析師的需求更是呈井噴之勢。
在數據分析人才培養上,國外已經將數據分析師人才作為國家戰略。據統計,目前世界 500 強企業中,有90% 以上建立了數據分析部門。大數據時代對數據分析師的巨大需求也大大刺激了高等院校的培養熱情。
E. 學習數據分析要懂得哪些數學知識
1、數據分布
數據分布主要靠幾何分布、泊松分布、二項分布來研究數據的分布趨勢。例如,目標數據段整體分布是發散的還是集中的?集中在哪個頻率段?中位數集中在哪個區間段?佔80%的數據集中在什麼數據區間段?看分布的目的就是了解業務數據是否穩定,以及數據的集中度。
2、正態分布
正態數據類型按照屬性可以分為連續型數據和離散型數據。連續型數據屬於可以不斷細分的數據,如:長度,寬度,高度,密度,溫度等。離散型數據不可被細分,主要來表達客觀事物的屬性,如:個數,屬性,比率等。
3、統計抽樣
統計抽樣涉及到如何設計樣本、點量估計、比例抽樣分析。當對海量數據進行數據分析,查看數據分布情況的時候比較困難。就需要對樣本進行抽樣,通過抽樣樣本分布情況來反映總體樣本的分布情況。
F. 請問如果想要從事數據分析工作,應該要學習哪些內容呢
基礎的工具技能:Excel、SQL、PPT、Python等。
Excel是日常工作中用到的最多的工具,常用的函數及數據透視表都要學。
SQL是數據分析的核心工具,主要學習Select、聚合函數以及條件查詢等內容。
Python重點掌握Pandas數據結構、Matplotlib庫、Pyecharts庫及Numpy數組。
對於工具來說,不同行業對工具的要求也會有差異,比如金融行業要求SAS等,一般情況下Excel、SQL、PPT、Python這4種工具能搞定大部分的數據分析工作
除了工具技能外,作為數據分析師還要了解統計學知識及數據分析方法、業務知識,要有一定的數據思維,能夠獨立完成數據報告的撰寫等。
G. 學習數據分析需要掌握哪些知識
具有數理統計,經濟學,資料庫原理以及相關知識;能熟練使用excel、spss、quanvert、sas等統計軟體。
工作能力: 嚴謹的邏輯思維能力、學習能力、言語表達能力、管理能力
工作態度:積極主動、工作認真、工作嚴謹
具體要求:
1、根據數據分析方案進行數據分析,在既定時間內提交給市場研究人員;
2、能進行較高級的數據統計分析;
3、公司錄入人員的管理和業績考核;以及對編碼人員的行業知識和問卷結構的培訓;
4、錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對;
其他方面的要求:
1. 持證上崗。
2. 熱愛本職工作,具有高度的責任心和忘我的工作精神,愛崗敬業,工作認真細致,能認真完成公司交給的各項工作任務。
3. 要求掌握較深的業務知識和計算機應用知識,能用行業各種應用軟體進行各種數據分析和綜合數據處理,加工成有用的信息提供領導進行決策;能配合系統管理員進行計算機網路維護及管理。
4. 負責本公司計算機信息網絡數據的收集、傳遞(主要是上報)和管理工作,對各網點上報的數據和本機房傳遞的信息數據,要做好詳細的「數據傳遞紀錄」,對未按時間要求漏報和數據有誤的網點要及時督促,每月將各經營站、點數據上報情況通報一次;負責各類數據的整理、匯總和分析處理工作,及時向本公司領導及有關部門上報信息數據,做好相關紀錄;負責本公司網路信息數據的安全管理,及時做好各類數據及報表的備份工作,做好歸檔、保管工作,做好信息數據的保密工作,嚴禁向未授權單位、部門及個人提供各類信息數據;負責機房文件收發、歸檔和保管工作。
5. 遵守特定的工作時間:必須等各網點數據傳輸完畢核對無誤後才能下班。
關於數據分析員:
數據分析員是根據數據分析方案進行數據分析的人員,能進行較高級的數據統計分析,負責公司錄入人員的管理和業績考核,以及對編碼人員的行業知識和問卷結構的培訓,和錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對等職責。
H. 數據分析師要學會什麼技能
要熟練使用 Excel、至少熟悉並精通一種數據挖掘工具和語言、撰寫報告的能力、要打好扎實的 SQL 基礎。
1、要熟練使用 Excel
Excel 可以進行各種數據的處理、統計分析和輔助決策操作,作為常用的數據處理和展現工具,數據分析師除了要熟練將數據用 Excel 中的圖表展現出來,還需要掌握為生成的圖表做一系 列的格式設置的方法。
注意:
1、與傳統的數據分析師相比,互聯網時代的數據分析師面臨的不是數據匱乏,而是數據過剩。因此,互聯網時代的數據分析師必須學會藉助技術手段進行高效的數據處理。更為重要的是,互聯網時代的數據分析師要不斷在數據研究的方法論方面進行創新和突破。
2、就行業而言,數據分析師的價值與此類似。就新聞出版行業而言,無論在任何時代,媒體運營者能否准確、詳細和及時地了解受眾狀況和變化趨勢,都是媒體成敗的關鍵。
I. 數據分析要學習哪些
數據分析所需要學習的知識:
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。
分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。
編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。
邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。
數據可視化
數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。
對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。
協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。
對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。