1. 「大數據」要這樣用才賺錢!
「大數據」要這樣用才賺錢!
大數據的生意經其實很簡單,就是收入增加,花費減少;就是增加客戶,提高客戶體驗,提高資金回報的杠桿率;大數據應用成熟之後,大數據可以預測商業未來,發現新的商業機會。
一石激起千層浪,國務院發布的2015 第50號文《促進大數據發展行動綱要》刷滿了朋友圈,特別是其中提到了大力推動政府部門數據共享,穩步推動公共數據資源開放。2017年底前形成跨部門數據資源共享格局,到2018年實現統一共享平台全覆蓋和數據共享及交換。2020年培育10家國際領先的大數據核心龍頭企業,500家大數據應用、服務和產品製造企業。
眾所周知,大數據商業價值巨大。但是中國大數據的商業價值還沒有被充分挖掘。主要的困難在大數據的分散,具有價值的數據大部分集中在在政府內部,壟斷國企業,以及互聯網巨頭之中。分散的數據無法幫助企業拿到具有價值的信息,無法實現大數據的商業變現。政府開放數據,以及大數據交易市場的建立是中國大數據商業價值應用的重中之重。
另外大數據的應用場景和大數據隱私問題,也是大數據商業應用功能的兩大問題,不知道數據應用場景,就無法尋找具有價值的數據,就無讓數據發揮作用,大數據的應用就會停留在解決數據採集、處理、存儲等大數據1.0時代的低級階段,無法實現大數據商業變現,無法激勵企業進一步投資大數據,無法形成數據價值應用的生態循環。大數據隱私問題是所有企業不能迴避的問題,到底何種數據可以進行交換,何種數據可以採集和變現,何種數據可以作為商品在市場流通,這些問題既影響個人隱私保護,又影響到企業購買數據產品的積極性,同時也影響了數據企業的發展。
中國大數據企業分為三類,一類是大數據技術公司,為企業提供大數據平台搭建,技術咨詢,大數據計算和存儲的產品,例如華為、亞信、浪潮等傳統IT公司。一類是大數據服務公司,為企業提供基於大數據技術的服務、平台、產品。包括為企業搭建大數據挖掘工具,搜索引擎,分析引擎等大數據處理平台,大數據清洗和挖掘服務例如明略科技,ADMaster,百分點。最後一類是提供數據產品的大數據公司,他們擁有數據,加工生成具有價值的數據,為市場提供標準的數據產品。例如芝麻信用,TalkingData,九次方,星圖數據等。
中國大數據市場的數據來源有四種,一種是通過網路爬蟲採集的外部數據,大多數提供輿情分析的公司就是通過爬蟲技術來進行數據採集的。例如海量數據。一種是提供SaaS服務得到的數據,例如Talkindata。另外一種是靠和運營商或政府合作,通過數據挖掘得到的數據,例如亞信和九次方。最後一種就是自身平台產生的數據(電商、旅遊、媒體等互聯網企業),包括BAT以及較大的一些互聯網公司如360、當當、唯品會、聚美優品、攜程、今日頭條等。
一、開放數據的價值
開放數據就是政府向社會公布自己所擁有的,並經過脫敏的數據。包括天氣數據、GPS數據、金融數據、教育數據、交通數據、能源數據、醫療數據、政府投資數據、農業數據等。這些原始數據本身並沒有明顯的商業價值,但經過一些公司加工之後,可以產生巨大的商業價值。
開放數據在美國有幾千億美金的市場,包括300億美金的氣象數據,900億美金的GPS數據,上千億美金的醫療數據。但政府開放的數據是原始數據,數據自身的商業價值並不大,需要專業的公司對數據進收集,清洗,挖掘,展現,從而形成具有商業價值的數據。在美國有很多公司是依靠加工政府開放數據而實現其商業價值的,例如處理天氣數據的Zillow公司,the weather channel 公司,以及處理GPS數據的Garmin公司,它們的總市值已經超過了一百億美金。
1 、政府開放數據的主要范圍
a政府收集和製造的科學數據。例如天氣數據,政府資助的醫療研究數據。這些數據都可以作為公共資源進行使用。
b 政府運行的數據,例如政府支出或大型項目運行數據。開放數據一方面可以增加民眾對政府的信任,另一個方面可以給一些公司帶來商業機遇。
c監管行業的數據。這些數據由企業提供給政府,並且經過政府二次加工。這些宏觀數據對於產業規劃,企業的投資戰略都有很大影響。
2、 中國開放數據之路的挑戰
a 國家對數據治理還沒有完成。很多數據沒有集中管理,還是處於信息孤島狀態,這些都是開放數據需要解決的問題。數據治理投資巨大,時間周期較長,都是巨大的挑戰。
b 一些開放數據還不是電子形式。例如醫療數據和教育數據,在一些地區還處於紙質記錄狀態,沒有形成電子檔案。這些數據的電子化也是一個較大的挑戰。
c 開放數據的脫敏和整合將是一項重大的挑戰。特別是國有企業的數據,哪些數據可以公開,哪些數據需要脫敏,如何整合各個地方的數據,這些都是一個挑戰
d 大數據服務公司和大數據人才匱乏。由於大數據市場剛剛開始,市場上缺少大數據人才和大數據服務公司,公開的數據短時間可能很難產生商業價值,這會影響政府和企業開放數據的積極性,不利於形成良性的大數據商業市場,會影響開放數據項目的持續發展。
3、有關開放數據一些建議
人類社會即將進入數字時代,開放數據將會是巨大的生產力。政府已經認識到了開放數據的價值,會持續推動政府和國企的數據開放。即使短時間內開放數據的投資看不到商業價值,但其未來經濟價值會促使政府堅持開放數據的政策,持續進行投資。就像中國的高速公路,開放數據是另外一條信息高速公路,將數據轉化為資產,轉化為巨大的社會生產力,幫助企業實現更大的商業價值。
對於數據擁有者的政府,需要在保障公共安全和個人隱私的前提下,完成數據治理和數據整合,逐步向社會開放數據,並提高數據質量,公開面向所有個人和企業,有效利用政府科技資金,讓利益相關企業和個人參與到開放數據項目中,鼓勵創新,接受外部挑戰,利用集體智慧,實現數據最優選擇。
對於國有企業,需要在保護自身商業利益的前提下開放數據,幫助各自產業鏈企業的發展。同時開放數據也可以幫助其自身進行產業規劃,進行有效投資,發現市場機會和風險,穩健經營,科學決策。企業可以利用開放數據提高生產效率,減少資源浪費,降低決策失誤風險。產業鏈企業的良性發展,也會推動國企自身發展和進化,提高競爭力,優化企業經營,實現產業共贏。
對於企業家,開放數據將會作為新的資源,幫助企業進行發展,聚焦新的商業機遇,特別是在開放數據影響較大的保健行業,金融行業,能源行業,教育行業。數據服務公司可以利用開放數據,幫助消費者挖掘數據的潛在價值,為企業和政府提供具有價值的商業數據。對於經營中的公司,可以利用開放數據評價商業夥伴和潛在投資,通過提供數據來樹立消費者的忠誠度,學會在透明的商業社會中進行經營,尋找公共或私人合作的機會,專注自身產品和客戶,為消費者提供更好的產品和服務。
二、萬億的大數據市場
2014年的GDP中消費佔比已經超過了50%,標志著中國經濟正在向市場經濟轉型,消費佔GDP 50%-70%是中等發達國家向市場經濟過渡的一個表現,未來中國經濟增長最大的引擎應該來源於消費,特別是個人消費。中國正在經歷經濟結構調整和城鎮化,個人消費需求巨大,社會產品較為豐富,渠道也較為通暢,物流成本正在下降,運輸能力正在提高。但是社會消費零售總額增加的還不夠快,資源配置不平衡,社會整體消費水平還處於較低的水平。這些問題正在成為中國經濟發展的難題,是企業和社會需要解決的問題。
大數據的商業應用將會幫助企業解決這些問題;大數據的有效利用將會提高社會消費水平,將會幫住企業提高效率、洞察客戶、增加收入。大數據商業應用未來是萬億級的大市場,大數據是大生意。
大數據時代最重要的特徵是人類所有的行為都被數據記錄下來,無論是在電商的購買行為,旅遊度假,娛樂活動,行為軌跡等,所有的人類社會行為都被各種感測器和互聯網記錄下來。數據記錄了一切,人類社會的行為都變成了數據,用紙質媒體記錄人類歷史的時代已經過去,歷史正在被數據以文字、數據、表格、聲音、影像的方式記錄了下來。中國的大數據應用主要集中在徵信和精準營銷,這兩個市場的規模加在一起不過兩千億,但是大數據如果同所有企業的商業需求相結合,其產生的化學反應將是巨大的,市場規模將會超過萬億,大數據是個大生意。
網路連接了信息與讀者,阿里連接了商品與消費者,騰訊連接了人與人。BAT所有的連接都是建立在數據基礎之上的,可以認為大數據連接了一切。數據連接了消費者和商家,數據連接了客戶習慣,數據連接客戶喜好,數據連接了位置,數據連接了時間和空間,數據連接了歷史和現在。連接一切的大數據將會反饋所連接的事物、空間和時間,通過數據記錄來反饋物體的移動,客戶的消費習慣,個人愛好,行為習慣,活動軌跡,運動規律等。重要的這些反饋數據能知道;你是誰、你在哪裡、你喜歡什麼、你在干什麼、你的消費能力、以及你未來的需求等。所有被反饋的事物都被打上了一個或多個數據標簽,這些具有價值的標簽經過整理和分析後,將會揭示事物之間的相關性和規律,將會為個人、商家、社會帶來巨大價值。
1、大數據幫助製造業規劃生產,降低資源浪費
製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,為客戶定製產品。
例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥,
2、移動大數據幫助房地產開發商規劃房地產開發
房地產行業在過去為中國GDP貢獻了很大力量,未來粗放型的房地產行業將會轉向精細化經營,從選地到規劃和從設計到建設,都需要參考當地到人口數據和消費者信息,進行科學決策;利用大數據商業應用加快房子銷售速度,降低自身負債。
房地產公司可以利用人群的手機位置信息來幫助企業進行開發規劃、土地選址、商鋪開發等。同時利用人群到用戶畫像信息幫助房產公司選擇合作商戶,提升消費人氣,最終提高房產價值。
3、移動大數據幫助餐飲零售行業進行選址和顧客導流
餐飲零售行業最關注客戶流量,過去開店選址時經常安排人員在十字路口進行人流統計,利用統計的人口流動信息來決定開店地址。進入到移動互聯網時代之後,智能手機的位置信息可以幫助餐飲零售行業進行開店選址,企業可以參考客戶畫像來決定開店的規模,以及產品的類別。
移動互聯網端的用戶標簽和畫像數據還可以幫助企業進行一些精準營銷,為新開的商戶導入客流。特別是在規模較大的購物商廈中,移動App端的位置導航功能,可以指引客戶找到新的商戶,參加促銷活動。市場上已經有成熟的零售餐飲商家和移動互聯網大數據公司在開店引流方面進行合作,資金利用的杠桿率超過了5倍,投入產出比較高。
4、感測器數據幫助產品進行故障診斷和預測
家電和汽車正在走向智能化,通過安裝感測器,汽車和智能家電可以將運行參數和運行狀態傳送到廠家的雲平台,廠家可以了解其產品的運行狀態,零部件的老化程度,幫助廠家及時更換故障器件,延長產品使用壽命,提高安全系數。汽車行業和智能家電在物聯網領域將會產生巨大的市場,雲計算和大數據處理平台將起到關鍵的作用。
中國汽車市場的銷售規模超過萬億,家電市場也有一萬多億。車聯網和智能家電涉及的大數據應用市場也是巨大的,按照大數據商業變現高杠桿率的特點,其市場規模至少應該在百億左右。
5、利用移動互聯網位置信息進行精準營銷
O2O已經成為了一個重要的商業模式,很多互聯網企業和傳統企業都在尋找O2O的應用場景,訂餐、教育、家政、汽車美容等都成為O2O的應用典範。移動互聯網數據具有LBS和實時特點,可以幫助企業及時連接客戶,依據客戶需求進行精準營銷。
大型購物中心一般都設有電影院,經常存在某些電影在開場前30分鍾,大量電影票還沒有出售的情況。藉助於手機App推送廣告功能,電影院在電影放映前30分鍾,可以將電影票以2折價格推送給正在周圍就餐的客戶。依據客戶畫像信息,電影票將推送給喜愛看電影的顧客,增加電影銷售額。企業可以利用手機App進行廣告推送,做到千人千面,依據客戶喜好來進行廣告推送。這種精準廣告推送具有成本低、轉化率高的特點,在餐飲、服裝、美容、零售等行業取得了良好的應用效果。如果基於位置信息的精準廣告推送被大規模的商業應用,將會促進商品流轉,大幅度提高社會消費總額,幫助傳統企業實現互聯網+的戰略。
6、電商大數據將會幫助企業優化資源配置
電商是最早利用大數據進行精準營銷的行業,電商網站內推薦引擎將會依據客戶的購買行為,進行關聯產品的推薦。除了精準營銷,電商還可以依據客戶消費習慣來提前為客戶備貨,並利用便利店作為貨物中轉點,在客戶下單後的短時間內,將貨物送上門,提高客戶體驗。電商還可以利用其交易數據和現金流數據,為其生態圈內的商戶提供小額貸款,也可以將此數據提供給銀行,為中小企業信貸提供支持。
電商的數據量足夠大,數據較為集中,數據種類較多,其商業應用具有較大的想像空間。包括預測流行趨勢,消費趨勢、地域消費特點、客戶消費習慣、消費行為的相關度、消費熱點等。依託大數據分析,電商可幫助企業進行產品設計、庫存管理、計劃生產、資源配置等,有利於精細化大生產,提高生產效率,優化資源配置。
7、移動大數據助力交通運輸規劃和管理
交通大數據應用主要在兩個方面,一方面可以利用大數據感測器的數據了解車輛通行密度,合理進行道路規劃。另一方面可以利用大數據分析來實現交通信號燈智能切換,提高已有線路運輸能力。
在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。大數據可以幫助機場安排航班起降,提高管理效率;航空公司可以利用大數據提高上座率,降低運行成本;鐵路公司可以利用大數據安排客運和貨運列車,降低運營成本。
8、大數據幫助金融行業進行價值變現
大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。招商銀行(600036,股吧)利用客戶刷卡、存取款、電子銀行轉帳、微信評論等行為數據進行分析,每周給客戶發送針對性廣告信息。
中國目前金融行業大數據價值變主要在用戶體驗提升和大數據營銷兩個方面,其中招商銀行信用卡中心和平安銀行(000001,股吧)走到了金融行業的前面。
大數據在很多行業都有廣泛的應用場景,例如在醫療行業,農林牧漁、能源行業、物流行業等,大數據將會是電商之後的另外一個巨大市場,結合了所有行業的商業需求之後,大數據產業的市場規模將會是個萬億級別。大數據不是電力但是比電力更能提供動力,大數據不是石油,但是比石油更能驅動企業發展。大數據就是資產,能夠幫助企業進行價值變現。大數據的生意經其實很簡單,就是收入增加,花費減少;就是增加客戶,提高客戶體驗,提高資金回報的杠桿率;大數據應用成熟之後,大數據可以預測商業未來,發現新的商業機會。
2. 房地產企業如何利用網路進行營銷宣傳求解
可以藉助網路強大的網路影響力助力房產行業宣傳推廣。
通過疫期營銷變化趨勢、房產行業大數據洞察,我們發現疫情之下,住宅市場的購房需求或將被延期滿足,但不會消失。為此,網路用科技賦能房產,提出適配房產行業專屬的營銷解決方案。
例如恆大在網上全面鋪開「實景看房」的宣傳攻勢,再次將網上購房推向新的高潮。疫情的推動使得房產廣告主更加看重VR看房的優勢,實現「足不出戶也能看房」,緊密契合疫情期間受眾群體的需求,解決了用戶無法達到現場的窘境。並且用戶可以通過品牌專區直接進入網上售樓處與房企進行溝通。
另外,網路信息流、網路開屏等長橫幅大尺寸廣告和全屏廣告這兩種極具視覺沖擊力的廣告形式在今年獲得了更多重視,廣告投放佔比分別提升9.2%和7.9%。
3. 做裝修怎麼使用誠睿大數據從網上找客戶
一、前期量房
業主約好設計師去現場,把客廳、卧室、廚衛、陽台等空 間測量准確,結合現場畫出平面圖,然後初步溝通設計方案。
二、設計平面圖
設計是一個職業,不是裝修的一個附帶。如果你有付設計費的預算,那設計就是重要的一環。設計好圖紙後設計階段結束,施工開始。
三、水電施工
都知道水電屬於隱蔽工程,責任重大,所以施工過程中需要在材料、施工工藝、質量上嚴把關。規范水電施工就可以避免很多問題。
定位開槽
2.管線安裝
3.完備布線
4.完工驗收
四、瓷磚鋪貼
木地板、地磚、牆磚、過門石等等一系列吧。看整體設計搭配。
地磚鋪貼:
找平、彈線、試鋪、浸水(磚的不同)、混漿、塗漿、鋪貼、修整。
廚房、衛生間這里需要施工前做閉水實驗。
木地板這方面也是根據經濟體量來決定,有錢的就用貴的好的,沒錢的就用經濟實惠的。
五、木工階段
木工階段施工工藝、質量等要求設計師嚴把關。
關於材料上可以講。
家裝盡量不要做跟油漆結合的產品,比如鞋櫃、衣櫃、櫥櫃之類的。油漆再水性漆,它也有化學成分。
什麼木工板、奧松板、大芯板、密度板等等能不用就不用,能少用就少用。
木工完工後基本上基礎裝修就完成了。設計師配合甲方驗收,看看還有那些不稱心的地方,調整修繕,做到合心意就ok。
六、最後就是成品的安裝。
門、櫥櫃、潔具、燈,開關、插座等等。
最後就是細節的搭配。軟裝,軟飾之類。你可以跟設計師溝通,讓設計師幫你。
4. 房產銷售如何找精準客源呢
做房產銷售的人員需要快速精準找到客源,就必須先把自己的客戶群體確定好了!
建議使用到大數據和一些具有推廣功能等等的系統平台來做獲客;有個「附近客智能營銷系統」挺不錯的!
這個附近客智能營銷系統可以經過兩次的精準篩選,才會把目標的客源推薦給到你的
第一次是大數據定位篩選,可以定位到全國任何鎮區跟商圈,然後再根據客戶的行為標簽把對房子有需求,近期有考慮購買的客戶進行第一次篩選出來
第二次篩選是把您的房源廣告對這些意向客戶進行精準推送,只要點擊瀏覽過您廣告的客戶,我們後台都可以及時獲取到客戶聯系方式,並且第一時間推送給你。
這樣篩選出來的客源就非常精準了,都是有需求,對房源有了解的客戶了
5. 如何運用大數據
我們如何使用大數據?
第一點,明確數據分析的目的
首先,您必須知道手中的數據要怎麼處理,這意味著您需要清楚需求以及要從數據中獲取什麼。讓我們以產品經理為例。當許多產品經理設計自己的產品時,他們可能會花費大量時間來設計產品,但是他們忽略了該產品是否可以成功。這很難滿足客戶的需求。因此,如果要最大化自己的數據的價值,則必須事先考慮要執行的操作。
第二點,必須擴大數據收集方式
關於數據收集,通常有四種方法。它們是從外部行業數據分析報告(例如iResearch)獲得的;積極從社區論壇(如AppStore,客戶服務反饋和微博)收集用戶反饋;參加問卷調查設計和用戶訪談等調查,收集並觀察用戶在使用產品時遇到的問題和感受的第一手數據;從記錄的用戶行為軌跡研究數據。
6. 房產如何利用大數據獲客
房產主要是能在特定的app上進行信息曝光及客戶獲取,可以找找琥源 科技 ,他們有近8億的客戶資源,有很多的成功案例。
房產銷售主要是電銷和線上線下活動,因此要一些精準的客戶資源進行電銷,然後邀請客戶參與活動。可以考慮使用 移動智能營銷軟體 ,智能營銷系統是由三部分組成: 大數據 精準篩選, 多渠道 移動智能營銷及超級鏈接、後台意向客戶獲取。 大數據精準篩選 可以讓你定位周邊客戶進行精準畫像分析。讓你的營銷有的放矢 ,精準獲客。
有需要的隨時聯系我!
7. 如何運用大數據
1.可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統
計
學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如
果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3. 預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理。 大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
大數據的技術
數據採集: ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取: 關系資料庫、NOSQL、SQL等。
基礎架構: 雲存儲、分布式文件存儲等。
數
據處理: 自然語言處理(NLP,Natural Language
Processing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理
解也稱為計算語言學。一方面它是語言信息處理的一個分支,另一方面它是人工智慧的核心課題之一。
統計分析:
假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、 方差分析 、
卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、
因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數
據挖掘: 分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity
grouping or association rules)、聚類(Clustering)、描述和可視化、Description and
Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測 :預測模型、機器學習、建模模擬。
結果呈現: 雲計算、標簽雲、關系圖等。
大數據的處理
1. 大數據處理之一:採集
大
數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的
數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除
此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時
有可能會有成千上萬的用戶
來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間
進行負載均衡和分片的確是需要深入的思考和設計。
2. 大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些
海量數據進行有效的分析,還是應該將這
些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使
用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
3. 大數據處理之三:統計/分析
統
計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通
的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於
MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
4. 大數據處理之四:挖掘
與
前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數
據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於
統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並
且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。
8. 互聯網大數據與不動產估價的關系
大數據對房地產估價機構的影響 大數據有助於機構獲得更強的決策力、洞察力以及流程優化能力,其主要特徵包括數據量大、數據種類繁多、最大化非標准化數據價值等[1]。大數據對房地產估價機構的發展具有重大影響,本文主要從以下三方面進行相關論述: 大數據對房地產估價機構的估價業務的影響主要表現在兩個方面,即業務空間范疇拓展與傳統估價業務的改進。 (1)業務空間范疇拓展。現階段,在大數據時代的背景下,房地產估價機構已經開始從傳統的抵押貸款評估業務逐漸轉向房地產咨詢業務,然而其咨詢業務的發展必然要實現數據處理的信息化。大數據的出現與發展,為房地產估價行業的數據挖掘技術的改進提供了條件,使其日益成熟,再加上,信息化的房地產估價機構對獲取的信息數據開展了深層次的挖掘與利用,促使了各種高質量、多樣化的估價數據衍生產品的產生,為估價產品增添附加值的同時,有利於業務空間范疇的拓展。 (2)傳統業務改進。
查看更多
9. 現在裝修公司怎麼使用誠睿大數據開發客戶
裝修公司如何尋找客戶群體一直是困擾裝修企業發展的一大難題,隨著人們對生活質量的逐漸重視,裝修行業越來越受關注,也導致裝修行業競爭激烈,如何快速有效的大量開發客戶成為裝修平台佔領市場的一大難題。
而隨著信息時代的發展,各種投放渠道成本不斷拉高,有效線索越來越少,單條有效線索成本高達幾百上千元,對於普通裝修行業來說越來越難以為繼。
運營商大數據獲客如何實現???
目前,三大運營商統計擁有高達16億注冊用戶,技術可實現通過三大運營商大資料庫跟蹤所有移動端用戶的所有行為足跡進行意向數據確認。通過基站和注冊情況可對客源信息區域、年齡區間、性別等等進行全維度畫像篩選。
那麼運營商大數據獲客的實際效果可靠嗎?
三大運營商皆為實名注冊用戶,通過移動網路實時進行行為足跡跟蹤,完全不用擔心出現空號錯號!
不考慮時間情況下,運營商大數據技術可實現搜集移動端用戶所有時間段行為足跡,因而可以做到實時觸達客源。
運營商大數據獲客形式為主動獲客形式,完全避開各種投放渠道的無效點擊計費,無效曝光計費,只要產生規定行為,且達到篩選標准,無論是否留咨注冊均可實現數據確認,全網確認意向客戶,避免有效流量的流失,且極限拉低獲客成本。
科技賦能,萬物互聯,運營商大數據以站在科技前沿的優勢助力企業告訴發展
10. 貸款中介如何使用誠睿大數據找客戶
1.只有當有需求的時候,你才會買房子。首先,為了確定你的客戶是否真的有意買房子,沒有買房子的沖動,你向他解釋,但也是徒勞的。圖2。是否出售,關鍵在於房地產經紀人為客戶選擇好的房子。與客戶真誠交談,大致了解客戶的需求,站在客戶的立場上,為他們選擇合適的房子,而不只是推銷房子。圖3。學會觀察,傾聽和分析。和顧客談話時,我們必須多觀察。通過觀察顧客(眼神、舉止、表情等) ,及時了解顧客的心理變化,了解他們的真實需求,分析對方的牌和心理,用文字探測,防患於未然,與顧客建立共識。圖4。有專業知識。既然做的是房地產銷售,我們應該熟悉房地產市場,法律法規,金融等。我們是房地產銷售專家,5,客戶永遠不會想買昂貴的。你必須站在顧客的角度為他分析問題,讓顧客感到他們已經佔了便宜的感覺,即使顧客買的很貴,他也能隨時接受。圖6。利用顧客的弱點。當和顧客談論賬單的時候,顧客只是簡單地說,產品肯定是需要的,但是,你還是得回去等我的電話。此時盡量不要等待,抓住客戶的弱點,先奉承再按單。圖7。恭維你的顧客。人們喜歡被別人稱贊,一句簡單的贊美之詞會讓對方感到非常開心,使雙方關系親密。圖8。設身處地為他們想想。我們不要急於反駁客戶的理論,而是站在客戶的角度,讓客戶更容易接受你的建議,如果你也這么想的話。圖9。用小策略來激勵你的客戶。客戶往往會在兩個或多個帳戶的地位,或房地產優柔寡斷,不能作出最終決定。除了突出項目的優勢,我們還使用一些小的戰略,以刺激客戶。圖10。一石二鳥,互動營銷?也許這次潛在的顧客不是一個,而是兩個,甚至更多。我們需要學會擴大我們的營銷努力,以便現有客戶繼續影響其他客戶。