導航:首頁 > 數據處理 > 轉大數據要學哪些東西

轉大數據要學哪些東西

發布時間:2022-12-23 18:16:00

1. 大數據專業主要學什麼

當前大數據應用尚處於初級階段,根據大數據分析預測未來、指導實踐的深層次應用將成為發展重點。各大互聯網公司都在囤積大數據處理人才,從業人員的薪資待遇也很不錯。

這里介紹一下大數據要學習和掌握的知識與技能:

①java:一門面向對象的計算機編程語言,具有功能強大和簡單易用兩個特徵。

②spark:專為大規模數據處理而設計的快速通用的計算引擎。

③SSM:常作為數據源較簡單的web項目的框架。

④Hadoop:分布式計算和存儲的框架,需要有java語言基礎。

⑤spring cloud:一系列框架的有序集合,他巧妙地簡化了分布式系統基礎設施的開發。

⑤python:一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言。

互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。

祝你學有所成,望採納。

2. 大數據專業主要學什麼 有哪些課程

數據科學與大數據技術,強調交叉學科特點,以大數據分析為核心,以統計學、計算機科學和數學為三大基礎支撐性學科,培養面向多層次應用需求的復合型人才。

大數據開設課程

數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐、離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析等。

大數據的學習階段

第一階段:大數據前沿知識及hadoop入門,大數據前言知識的介紹,課程的介紹,Linux和unbuntu系統基礎,hadoop的單機和偽分布模式的安裝配置。

第二階段:hadoop部署進階。Hadoop集群模式搭建,hadoop分布式文件系統HDFS深入剖析。使用HDFS提供的api進行HDFS文件操作。Maprece概念及思想。

第三階段:大數據導入與存儲。mysql資料庫基礎知識,hive的基本語法。hive的架構及設計原理。hive部署安裝與案例。sqoop安裝及使用。sqoop組件導入到hive。

第四階段:Hbase理論與實戰。Hbase簡介。安裝與配置。hbase的數據存儲。項目實戰。

第五階段:Spaer配置及使用場景。scala基本語法。spark介紹及發展歷史,spark stant a lone模式部署。sparkRDD詳解。

第六階段:spark大數據分析原理。spark內核,基本定義,spark任務調度。sparkstreaming實時流計算。sparkmllib機器學習。sparksql查詢。

3. 大數據專業主要學什麼

近兩年來,互聯網的發展迅速,相對應的帶動了很多行業的發展,大數據作為新興行業之一,半年來的人才需求在也是居高不下。

通過持續的觀察前程無憂與智聯招聘需求,在2016年6月大數據相關職位需求量,北京為21,511+個,穩居榜首,職位量佔比高達25.1%,上海與深圳雖然拿下第二與第三,但是數量相差甚遠。前十名也全部都是一二線城市,由此可以得出,大數據的發展,當前最活躍於偏向於發達的一線城市以及沿海地區。

從各行業發布的數量上來看,以計算機軟體職位需求量最大,互聯網/電子商務、IT服務/系統/數據/維護,緊隨其後,並且三者相差不大,由此可以看出,計算機、互聯網、IT類的職位需求的空缺一直很大,對於很多求職者而言,這是一個非常大的機遇。排名前四的與第五的數據相差很大,一方面是傳統崗位數量的飽和,另一方面也就是新興行業人才的稀缺。同時已經可以看出大數據在咨詢、房地產、教育等行業的應用已經出現一個小的趨勢,未來這些行業或將出現巨大的需求(或許這以一切的數據現象反映了當前國內的經濟現狀)。

從薪資水平上來看,5-8K是起步,20K以上的在2015年僅佔2.4%,而在2016年卻是增長到了21.5%%,由此可以看出,大數據其實也就是這一年始真正的發展。不論是平均最高月薪還是平均最低月薪,2016年在2015年的基礎上都有明顯的增長。平均月薪的增長意味著大數據進入了越來越多人的視線,專業人才難求,平均月薪瘋長,大數據不火都不行。

目前大數據培訓相對其他培訓項目要好就業,因為其他語言還是技能培訓都是有一定的市場基礎的,而大數據在最近兩年才大力發展,並且在各領域蔓延,因此所產生的人才缺口巨大,而在企業中真正對大數據技能比較強力的技術人才,又特別的少;

應用越來越廣,技術人才卻產生較慢,剛培訓的人員,只能適應基本的軟體操作和理論基礎;還達不到企業要完成復雜業務的技術需求;所以培訓入門快,拿薪資快,但只是一時,進入企業,不努力學習是跟不上發展與用人需求的。

大數據就業方向

大數據領域有三個大的技術方向,這些不同的技術方向,對應企業的哪些招聘崗位?

大數據技術與應用專業市場需求旺盛,對應崗位有大數據開發工程師、爬蟲工程師、數據分析師、數據科學家、數據挖掘工程師、機器學習工程師等;

大數據入門月薪已經達到了8K以上,工作1年月薪可達到1.2W以上,具有2-3年工作經驗的人才年薪可以達到30萬—50萬,一般需要大數據處理的公司基本上都是大公司,所以學習大數據專業也是進大公司的捷徑。

1. Hadoop大數據開發方向市場需求旺盛,大數據培訓的主體,目前IT培訓機構的重點對應崗位:大數據開發工程師、爬蟲工程師、數據分析師等2. 數據挖掘、數據分析&機器學習方向學習起點高、難度大,市面上只有很少的培訓機構在做。對應崗位:數據科學家、數據挖掘工程師、機器學習工程師等3. 大數據運維&雲計算方向市場需求中等,更偏向於Linux、雲計算學科對應崗位:大數據運維工程師

當下,大數據的趨勢已逐步從概念走向落地,而在IT人跟隨大數據浪潮的轉型中,各大企業對大數據高端人才的需求也越來越緊迫。這一趨勢,也給想要從事大數據方面工作的人員提供了難得的職業機遇。

4. 大數據專業主要學什麼

大數據技術專業以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等。

大數據技術專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等,知識結構是二專多能復合的跨界人才(有專業知識、有數據思維)。

以中國人民大學為例:

基礎課程:數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐。

必修課:離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析。

選修課:數據科學演算法導論、數據科學專題、數據科學實踐、互聯網實用開發技術、抽樣技術、統計學習、回歸分析、隨機過程。

大數據專業就業方向

1、數據工程方向畢業生能夠從事基於計算機、移動互聯網、電子信息、電子商務技術、電子金融、電子政務、軍事等領域的Java大數據分布式程序開發、大數據集成平台的應用、開發等方面的高級技術人才,可在政府機關、房地產、銀行、金融、移動互聯網等領域從事各類Java大數據分布式開發、基於大數據平台的程序開發、數據可視化等相關工作,也可在IT領域從事計算機應用工作。

2、數據分析方向畢業生能夠從事基於計算機、移動互聯網、電子信息、電子商務技術、電子金融、電子政務、軍事等領域的大數據平台運維、流計算核心技術等方面的高級技術人才,可在政府機關、房地產、銀行、金融、移動互聯網等領域從事各類大數據平台運維、大數據分析、大數據挖掘等相關工作,也可在IT領域從事計算機應用工作。

5. 大數據專業主要學什麼知識

當前大數據技術有java大數據和Python大數據最最為流行,然後要學習的有Linux Shell、hadoop(HDFS、yam等)、ZooKeeper、Flume、Kafka、Hive、Sqoop、Azkaban、HBase、Scala、Flink、Redis、MySql、數據倉庫(分為離線和實時),當然Sql編寫能力要多加多加練習,增強經驗,數據開發的崗位薪資待遇都是挺不錯的,當然也可以有其他崗位可以選擇,比如運維、數據分析、數據治理、數倉架構等崗位,實在不行去做數據標注吧,哈哈

6. 學大數據需要具備什麼基礎

說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。

7. 大數據學習需要哪些課程

(1)統計學:參數檢驗、非參檢驗、回歸分析等。

(2)數學:線性代數、微積分等。

(3)社會學:主要是一些社會學量化統計的知識,如問卷調查與統計分析;還有就是一些社會學的知識,這些對於從事營銷類的數據分析人員比較有幫助。

(4)經濟金融:如果是從事這個行業的數據分析人員,經濟金融知識是必須的。

(5)計算機:從事數據分析工作的人必須了解你使用的數據是怎麼處理出來的,要了解資料庫的結構和基本原理,同時如果條件充足的話,你還能有足夠的能力從資料庫里提取你需要的數據(比如使用SQL進行查詢),這種提取數據分析原材料的能力是每個數據從業者必備的。

此外,如果要想走的更遠,還要能掌握一些編程能力,從而借住一些專業的數據分析工具,幫助你完成工作。

擴展材料:

大數據(bigdata),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。

大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。

8. 大數據需要學什麼

數據倉庫東西HIVE;大數據離線剖析Spark、Python言語;數據實時剖析Storm等都是學習大數據需要了解和掌握的。
大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據歸納有五大特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

閱讀全文

與轉大數據要學哪些東西相關的資料

熱點內容
如何辨別酒水代理商 瀏覽:203
技術服務承諾書什麼時候簽 瀏覽:449
智慧水務信息化怎麼解決 瀏覽:235
有一款產品應該怎麼賣 瀏覽:15
如何進行建設工程信息化管理 瀏覽:997
為什麼程序什麼都輸出不了 瀏覽:788
滿25歲學什麼技術好 瀏覽:252
佳炎光電技術怎麼樣 瀏覽:620
青島滿2年不滿5年的房子怎麼交易 瀏覽:538
程序放在哪個存儲區 瀏覽:857
光電信息科學與工程要考什麼證 瀏覽:827
漳州有哪些市菜市場 瀏覽:238
交通運輸市場怎麼樣 瀏覽:538
如何在交易所交易點券 瀏覽:171
孩子學習美發有哪些技術 瀏覽:743
漢口白馬服裝批發市場怎麼去 瀏覽:495
一個產品怎麼拍攝視頻 瀏覽:644
軟體開發跟程序員哪個好 瀏覽:454
數據營銷渠道有哪些 瀏覽:358
湖北省市場部九十九部是什麼 瀏覽:928