『壹』 大數據在醫療行業的應用有哪些
大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。
『貳』 大數據醫療行業有哪些應用
一、電子病歷
到目前為止,大數據最強大的應用就是電子醫療記錄的收集。每一個病人都有自己的電子記錄,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。
二、健康監控
醫療業的另一個創新是“可穿戴設備”的應用,這些設備能夠實時匯報病人的健康狀況。和醫院內部分析醫療數據的軟體類似,這些新的分析設備具備同樣的功能,但能在醫療機構之外的場所使用,降低了醫療成本,病人在家就能獲知自己的健康狀況,同時還獲得智能設備所提供的治療建議。這些可穿戴設備持續不斷地收集健康數據並存儲在雲端。
三、醫護資源配置
這個看似不可能完成的任務,已經在大數據的幫助幫助下在一些“試點”單位實現。在法國巴黎,有四家醫院通過多個來源的數據預測每家醫院每天和每小時的患者數量。
四、大數據與人工智慧
人工智慧技術通過演算法和軟體,分析復雜的醫療數據,達到近似人類認知的目的。因此AI使得計算機演算法能夠在沒有直接人為輸入的情況下預估結論成為可能。由AI支持的腦機介面可以幫助恢復基本的人類體驗,例如因神經系統疾病和神經系統創傷而喪失的說話和溝通功能。
『叄』 大數據分析在疾病與健康研究方面的應用
大數據分析在疾病與健康研究方面的應用
大數據分析技術將在以上方面發揮著特殊的作用。
一、疾病與健康研究
在疾病與健康研究方面,我們可將其分為三個子方面:健康研究、亞健康研究和疾病研究。
1、健康研究
中國是地域遼闊的多民族國家,不同地區不同種群的人的基因和健康指標有所不同,同一地區同一種群的人在不同的性別和年齡上健康標准也有差異。深入研究和分析上述人群的健康規律,對衛生保健、健康促進、疾病預防和治療有著重大的指導意義。例如:
1.1 對體檢數據分析和挖掘,得出不同地區、不同人群的健康差異,以確定精確的不同人群的健康標准,針對不同人群制定適宜的防病,治病方法以及預後標准,並量身打造個性化,地區化的健康評估模型。
1.2 在制定不同地區不同人群的參考值時,可進一步分析健康指標在不同性別、年齡和季節的差別,以及權重比,從而完善適合於國人全面的系統化的更科學的健康參考值。
1.3 人體存在的內在平衡,使得各個可觀察數據間有其特有的規律,基於經驗只能發現簡單的規律如鈣、磷常數等,使應用數據挖掘等大數據分析技術可以主動發現復雜的系統性的人體醫學規律,大幅提升防病,治病以及預後推測的技術水平,並且也對亞健康有個更科學的判斷依據,以及了解健康到亞健康的逐漸失衡的過程。
1.4 對孕婦在孕產期、產後及新生兒的健康數據進行深入分析,研究孕產婦和新生兒的健康規律,開發對孕產婦和新生兒的健康評價和因素的評估模型,給出更科學的孕產婦和新生兒保健的指導。
1.5 對兒童成長的體檢數據分析和挖掘,研究兒童的健康規律,開發對兒童成長的評價和因素的評估模型,分別適應中國遼闊的地域和眾多的人群,給出更科學的兒童成長發育指導。
1.6 對老年人的健康數據分析和研究,研究老年人的健康特點,開發對老年人健康的評價和因素的評估模型,給出更科學的老年人養生的指導。
1.7 對健康人的精神和心理數據進行深入分析,制定健康人的精神和心理參考標准,開發對健康精神和心理的評價和影響因素的評估模型,給出更科學的精神和心理衛生方面的保健指導。
2、亞健康研究
世界衛生組織將機體無器質性病變,但是有一些功能改變的狀態稱為「第三狀態」,也稱為「亞健康狀態」,主要包括:功能性改變,而不是器質性病變;體征改變,但現有醫學技術不能發現病理改變;生命質量差,長期處於低健康水平;慢性疾病伴隨的病變部位之外的不健康體征。
對亞健康進行深入分析與研究對保持健康狀態,預防和糾正亞健康狀態以及對疾病的預防和治療都有十分重要的意義。例如:
2.1 研究亞健康與疾病間的相互關系。研究各種可觀察指標(體檢數據)在亞健康中的權重,以及在不同地區、人群中的分布。應用時間序列,線性/非線性回歸研究亞健康觀察指標之間的關聯性。通過亞健康體檢數據挖掘,分析導致疾病的影響因素,建立評估模型來預測危險度,並進一步建立疾病的預測模型。
2.2 研究亞健康與健康間的相互關系。通過對體檢人群的地區、職業、年齡等因素的分析,研究最新的健康和亞健康的人群分布。不同的人群地區環境不同,生活習慣不同,加入亞健康醫學指標以外的相關外部數據(如職業、飲食、習慣、性格、愛好等)後,可發現綜合因素對亞健康的影響,以及這些因素的各自權重,及相關關系,從而探究出亞健康的原因,對預防和治療亞健康起著指導作用。
2.3 研究亞健康治療和預後的研究。通過對亞健康治療和預後的數據分析,評價治療效果,評估最佳治療方案,進一步開展對專科亞健康治療和預後的研究,同時研究其與疾病的關系。
2.4 對精神和心理亞健康的研究。如對常見的精神亞健康狀態:如神經衰弱、抑鬱、焦慮和強迫等症狀,進行數據歸納整理、分析挖掘,從而導出精神和心理亞健康的新知識發現,探究出精神疾病的原因,對預防和治療精神疾病起著指導作用。
2.5 將住院和社區健康管理數據相結合,進行因素權重分析和多因素的特性抽取,最後形成模型指導治療。最理想的情況是個體化評估模型,為每個病人建立專用預測模型。
3、疾病研究
中國面臨的嚴重危害人民健康的疾病包括:
傳染性疾病,如結核病、艾滋病、SARS、禽流感、甲型H1N1流感等;
慢性非傳染性疾病,如惡性腫瘤、腦血管病、心臟病、糖尿病等;
精神和心理疾病;
小兒出生缺陷。
對患有各種疾病的病人的醫學數據及相關數據的研究分析,對各種疾病的預防和治療都有十分重要的價值。例如:
3.1 對傳染性疾病,如結核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。應用數據挖掘技術對傳染性疾病的數據進行分析,找出傳染性疾病的發病規律,揭示傳染性疾病的病因,進一步摸索出傳染性疾病的變異規律,建立傳染性疾病的預測模型。
3.2 對慢性非傳染性疾病,如惡性腫瘤、腦血管病、心臟病、糖尿病等疾病的研究。應用數據倉庫技術和數據挖掘技術對慢性常見病的數據進行分析,找出慢性常見病的發病規律,探索慢性常見病的病因,進一步摸索出慢性常見病的並發症規律,科學評估各種治療方案的療效,建立慢性常見病的預測模型。
3.3 對精神和心理疾病的研究。應用數據倉庫技術、數據挖掘技術和數理統計技術對精神和心理疾病的數據進行分析,從廣泛的多變數集中找出影響精神和心理疾病的主要因素,在遺傳學、後天影響和病理學等多方面探索精神和心理疾病的病因,科學評估各種治療方案的療效,建立精神和心理疾病的預測模型。
3.4 對小兒出生缺陷的研究。應用大數據分析技術對兒童出生缺陷的數據進行分析,從廣泛的大變數集中找出影響兒童出生缺陷的主要因素,在環境、遺傳學、病理學等多方面探索兒童出生缺陷的病因,建立兒童出生缺陷的預測模型。
3.5 針對門診和住院病人數據在線分析統計學差異,尋找陽性案例,為研究提供素材,並為科研的預實驗提供思路和准備。對住院數據進行多維度分析和挖掘,橫向達到單病種的水平,縱向包括所有可觀測數據,所收集來的知識有很大可能會啟發醫學專家有新發現。
3.6不同 治療手段和治療效果的在線分析。結合收集來的大量資料全面分析,盡量提前全面的了解治療的臨床效果。
3.7 葯品治療效果在線分析,治療效果、副作用、對其他疾病的效果評估。結合收集來的大量資料全面分析,盡量提前全面的了解新葯和老葯。目前的葯品不良反應主要靠醫生的通報,對醫生的職業素養和敏感有很大的依賴,而使用數據挖掘及資料庫中的知識發現,可以極大限度地改進這項工作。
二、環境與健康研究
環境因素對健康造成的損害較其他健康損害復雜,是微量、慢性、長期和不可逆轉的。環境健康影響與公眾利益息息相關,環境健康損害如得不到妥善處理還將轉化為社會、經濟問題。環境與公共健康研究以人類生態系統可持續發展研究為基礎,關懷人類現在和未來的健康與安全,從環境研究途徑關注社會、經濟活動對人類生理和心理的健康影響,探索環境變遷對人民健康造成危害的預防和治理措施。
應用大數據分析技術對環境健康的研究,主要包括發現案例、發病機理和臨床治療研究,預防和治理各類環境流行病在污染源以及污染途徑控制的研究等。例如:
1. 應用大數據分析技術研究環境因素對健康的影響,實行 一體化的環境和健康監測,並在全國實現數據共享。
2. 應用大數據分析技術研究環境污染對兒童的影響,以解決環境對兒童所造成的不健康和疾病迅速增長的問題,從而給予兒童特殊注意的環境和健康指導。
3. 應用大數據分析技術開展職業病和職業多發病的預防預測。對於各種職業的發病分布和嚴重程度,以及對職業病的深入分析。不僅包括傳統意義的職業病,也包括不同職業的不同的疾病分布和在病因中的權重。另外,還可以分析不同職業的暴露特點進而對病因進行研究。
4. 應用大數據分析技術開展對空氣污染顯著提高城市人群呼吸道和過敏性疾病的發生 率的研究。
5. 應用大數據分析技術開展雜訊污染損害兒童的聽力和干擾他們的學習能力的研究。
6. 應用大數據分析技術開展快餐業的發展使肥胖病發病率不斷增長的研究,尤其是不合理的營養對兒童健康的影響。
7. 應用大數據分析技術開展對轉基因生物技術的應用對自然界生物和人類基因的潛在影響的研究。
三、醫葯生物技術與健康
生物技術涵蓋生命科學的所有領域,醫葯生物技術是生物技術的重要組成部分。當今人類面臨的人口、食物、健康、環境和資源問題,無不與之緊密相關。醫葯生物技術最鮮明的特點是大量新思想、新技術、新材料、新方法和新產品引入醫學研究和醫療保健之中,如全新的醫學成像技術、基因工程技術、微電子技術、幹細胞工程技術、組織工程技術、納米技術、生物晶元技術、克隆技術、酶工程技術、細胞工程技術、發酵工程技術、蛋白質工程技術、生物醫學工程技術、基因組與蛋白質組技術、生物信息技術和中醫葯技術等及其產品,將大大提高疾病預防、診斷、治療和葯物設計研製水平,以及對突發事件(如傳染病和生物恐怖等)的檢測、預防與治療水平。
以大數據分析技術為核心的生物信息技術在由眾多新技術構成的醫葯生物技術中發揮有獨特的作用。例如:
1. 利用生物信息技術進行生物信息的存儲與獲取。
2. 利用生物信息技術開展基因的序列對比、測序和拼接。
3. 利用生物信息技術進開展基因預測。
4. 利用生物信息技術進行生物進化與系統發育分析。
5. 利用生物信息技術進行蛋白質結構預測和RAN結構預測。
6. 利用生物信息技術進行分子設計和葯物設計。
7. 利用生物信息技術進行腫瘤分類及遺傳學分析。
8. 利用生物信息技術開展在生物分子層面對精神病的研究及遺傳學分析。
9. 利用生物信息技術開展在生物分子層面對如H1N1等傳染病的研究。
四、衛生宏觀決策支持
衛生宏觀決策支持系統是以數據倉庫為數據中心、以數據挖掘為技術核心、以商務智能為展現工具的綜合衛生信息平台。它可以建立在各級別衛生系統上,如醫院、地區衛生系統、全國衛生系統,為各級衛生部門提供智能決策系統,深入了解衛生系統的歷史和現在,把握衛生系統業務發展的未來,評估衛生系統內部各部門的業務效績,幫助各級決策者提供最佳實施方案,給決策者一雙慧眼,清晰認知系統內各方面變化趨勢和業務得失,使對系統各部門的評價、考核、獎勵更加科學、公正、客觀,使系統內各級關系更加和諧,積極發揮各部門的潛能,提高系統的整體業務水平和經濟效益。使用商務智能輔助決策,可以提供各種有價值的信息,各種事件的關聯,以及不同於微觀的角度分析各種衛生信息,如預防接種基本數據,傳染病報告等等。
以上是小編為大家分享的關於 大數據分析在疾病與健康研究方面的應用的相關內容,更多信息可以關注環球青藤分享更多干貨
『肆』 醫療行業大數據應用的三個案例
醫療行業大數據應用的三個案例
文章從華大基因推出腫瘤基因檢測服務、大數據預測早產兒病情、廣東省人民醫院利用大數據調配床位3個醫療行業大數據應用案例中,以應用背景、數據源、圖說場景、實現途徑、應用效果5個視角去看待大數據在醫療的應用狀況。
案例一:華大基因推出腫瘤基因檢測服務
應用背景:
伴隨著生物技術、大數據技術的發展,個體基因檢測治療疾病已經成為現實。其中,最廣為人知的是美國好萊塢女星安吉麗娜?朱莉,在 2013 年經過檢測她發現自身攜帶致癌基因——BRCA1 基因,為防止罹患卵巢癌,於 2015 年切除了卵巢和輸卵管。目前,國內外已經有多家基因檢測機構,如我國的華大基因、貝瑞和康、 美國的 23andMe、 Illumina 公司等。華大基因一直致力於腫瘤基因組學研究,已經研究 20 多類癌症。近日,華大基因推出了自主研究的腫瘤基因檢測服務,採用了高通量測序手段對來自腫瘤病人的癌組織進行相關基因分析,對肺癌、乳腺癌、胃癌等多種常見高發癌症進行早期、無創傷檢測。
數據源:
檢測數據:患者血清、口腔黏膜數據、基因測序等。
其它數據:體檢數據、電子病歷、遺傳記錄、患者調查、地理區域以及生活條件等。
圖說場景:
實現路徑:
首先採取患者樣本,通過測序得到基因序列,接著採用大數據技術與原始基因比對,鎖定突變基因,通過分析做出正確的診斷,進而全面、系統、准確地解讀腫瘤葯物與突變基因的關系,同時根據患者的個體差異性,輔助醫生選擇合適的治療葯物,制定個體化的治療方案,實現「 同病異治」 或「 異病同治」 ,從而延長患者的生存時間。
應用效果:
癌症診斷和預測。腫瘤醫院的病人中有 60%至 80%剛到醫院時就已經進入中晚期,癌症早期的篩查可以幫助患者有針對性的改善生活習慣或者採取個體化的輔助治療,有益於身體健康;同時將癌症扼殺在搖籃里,從而降低日後巨大的醫葯開支和生活困擾。助力個性化醫療。結合生物大數據,挖掘疾病分子機制最終可以做到更好的篩查,更好的臨床指導以及更好用葯的過程。
案例二:大數據預測早產兒病情
應用背景:
安大略理工大學的卡羅琳·麥格雷戈( Carolyn McGregor)博士和一支研究隊伍與 IBM 一起和很多醫院合作,用一個軟體來監測處理即時的病人信息,然後把它用於早產兒的病情診斷。
數據源:
個人體征數據:心率、呼吸、體溫、血壓和血氧含量。
其它數據:孕婦產檢數據、電子病歷、遺傳數據等。
實現路徑:
系統會監控 16 個不同地方的數據,比如心率、呼吸、體溫、血壓和血氧含量,這些數據可以達到每秒鍾 1260 個數據點之多。在明顯感染症狀出現的 24 小時之前,系統就能監測到早產兒細微的身體變化發出的感染信號,及早預測控制早產兒的病情,從而提高新生兒的出生率。
應用效果:
預測病情。早產兒的穩定不是病情好轉的標志,只有通過海量的數據並且找出隱含的相關性才能發現提早知道病情,醫生就能夠提早治療,也能更早地知道某種療法是否有效,這一切都有利於病人的康復。
案例三:廣東省人民醫院利用大數據調配床位
應用背景:
起因於國外醫院的經驗以及廣東省人民醫院各專業科室差異很大的病床使用率。長期以來,優勢專業病源充足,病人候床情況嚴重,排隊入院,相反有些專業空床情況明顯,病床使用率僅 65%左右。為此管理層打出了模糊臨床二級分科、跨科收治病人、集中床位調配權的一套「 組合拳」 。
數據源:
患者數據:掛號數據、電子病歷、患者基本數據等。
醫院數據:各科室床位使用情況、診療活動、平均住院費用、平均住院周期等。
實現路徑:
對跨科收治病人之後的科與科之間的工作量、收入、支出、分攤成本等指標進行合理的劃分,強化了入院處的集中床位調配權,解決病人入院排隊情況,使醫院更好地履行了社會責任,同時也給增加了醫院的效益。
應用效果:
提高病床使用率。病床使用率由 87%提高到 92%,優勢專業候床排隊現象明顯減少。
支持決策判斷。優勢專科與弱勢專科的病人在地域構成比、平均住院費用等標上存在顯著差異,支持決策判斷。
『伍』 大數據應用潛力,醫療大數據的實踐又有哪些
現在的時代可以成為大數據時代。大數據時代的下的我們能更好地生活,與此同時,我們的生活方式也被大數據改變。數據基本上能跟任何行業進行互動,也可以說數據對每個領域來說都起到了推動性的作用,因為在數據驅動之下,各類領域就會根絕要求去改善自身的服務,提高產品的質量,這樣就能更好地滿足客戶的需求。大數據在醫療領域的應用也是很明顯。
雖然說大數據是一個數據的收集,對於個體還是不太具有針對性的。但是,大數據對我們的生活真的是起到了一個積極的作用。不過,即使醫療手段再先進,我們還是要保護好身體,不要生病。
『陸』 大數據行業對於醫葯行業有什麼作用呢
這個問題稍微有點廣泛了,簡單來說大數據就是到目前產出數據的整合,利用好這些數據能為生活帶來便利,而且能促進生產環節更加高效地配置資源,提高效率,促進產業升級,醫葯行業也在大數據時代脫穎而出,在生物醫葯領域,大數據更是人類挑戰疾病的重要武器。無論是從葯物的研發立項還是葯物上市之後的市場分析,都離不開大數據,簡單了解以下大數據對於醫葯行業的幫助。
大數據對於醫葯行業作用
以上只是醫葯大數據對於醫葯行業的一部分,還能查詢葯品中標數據,上市葯品價格、葯品質量,國內外說明書、醫保目錄、基葯目錄、醫療器械數據等等。
『柒』 數據挖掘技術在臨床醫學的應用研究
數據挖掘技術在臨床醫學的應用研究
21世紀是一個高度信息化的時代,隨著計算機信息技術的飛速發展及醫院信息化平台建設的需要,越來越多的軟體公司設計開發出各種各樣的醫療管理系統來滿足各個醫院的需求。
【摘要】 本文首先從數據挖掘技術的基本概念出發,對臨床醫療數據的特點進行分析,探討了數據挖掘技術在臨床醫學領域中的應用,並對它在未來的臨床醫療應用及發展提出展望。
【關鍵詞】 數據挖掘;臨床醫學;醫療系統;應用
一、前言
縣、市級以上綜合醫院,隨著醫院無紙化辦公系統的引入,各醫院對醫療信息管理系統的依賴程度越來越強烈,使用的信息管理系統越來越多,導致醫院管理越來越復雜。
然而隨著時間的積累,各個醫院信息管理系統中存儲了大量的數據資源,其中包含文字、聲音、圖像、視頻、影像等各種醫療數據,傳統的簡單的數據的查詢已經逐漸無法滿足醫院管理者的需求
。如何從大量的醫療數據中提取有利於服務臨床實踐和領導管理決策的數據顯得尤為重要,數據挖掘技術在此方面的運用也就應允而生。因此,提高對這些信息資源的利用水平,通過更加有效的分析、整合和利用這些數據,能夠更好地為患者、醫務人員、科研人員及管理人員提供全面、准確和及時的決策依據,是當今醫葯衛生行業急需解決的問題。
二、數據挖掘技術的概念
數據挖掘(DataMining),又譯為資料探勘,它是指從大量的、不完整的、模糊的各種數據中提取隱藏的、不被人發現的、但又存在有價值信息的探索過程。它是通過分析每個數據,從大量數據中尋找其規律的技術,主要有數據准備、規律尋找和規律表示3個步驟。
數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。它的基本思想是從各種數據中抽取有價值的.信息,目的是幫助決策者尋找數據間的潛在聯系,從中發現被忽略的要素,而這些信息對預測和決策行為是非常有用的。
數據挖掘的步驟會隨不同領域的應用而有所變化,每一種數據挖掘技術也會有各自的特性和使用步驟,針對不同問題和需求所制定的數據挖掘過程也會存在差異。此外,數據的完整程度、專業人員支持的程度等都會對建立數據挖掘過程有所影響。這些因素造成了數據挖掘在各不同領域中的運用、規劃,以及流程的差異性,即使同一產業,也會因為分析技術和專業知識的涉入程度不同而不同,因此對於數據挖掘過程的系統化、標准化就顯得格外重要。
三、臨床醫療數據的特點
1.數據多樣。臨床醫療數據成千上萬,包括文字、聲音、圖片、符號、影像、視頻等,所以結構類型眾多,這是它的最顯著特點。由於數據探索發現比較困難,使得開發通用的醫療數據軟體系統較為復雜。
2.數據量巨大。隨著人們生活水平的不斷提高,越來越多的人把身體健康放在首位,不定期去醫院做體驗,醫院各種醫療設備就會產生成千上萬條的醫療數據信息,最終導致醫療數據量急速增長。
3.數據表徵不顯著。醫療數據有文字、圖形等非數值型數據,使得數據挖掘人員很難找到數據間的對應關系。不同醫生的醫技水平不同,在診療過程中診斷病人情況可能存在不確定性,導致診斷結果不完整,也就難以發掘准確信息,最終導致每天都有大量相同或相近的數據產生,造成醫療數據的大量冗餘。
4.數據標准不統一。在醫學界,很多葯物的命名都沒有統一的規范標准,例如一個簡單的中葯,也有很多別名,例如荷花,別名蓮花、六月花神、水芝、水芸、藕花、水芙蓉、君子花、天仙花等。
5.數據安全重要性。病人在醫院治療完成後會留下各種醫療數據,很多數據都是病人的隱私,醫院管理者在進行數據分析與資源共享時,要保證數據資料的安全性,以防泄露病人隱私。
四、數據挖掘技術在臨床醫學領域中的應用
1.在醫療診斷中的應用隨著我國醫院信息化平台建設的升級,各個大型醫院都在進行信息化平台投資建設,逐步採用了適合自己醫院的電子病歷系統,並實現醫院內部信息共享,當不同科室的醫生在進行數據分析時,可以將不同病人的各種檢驗檢查結果與各種病症情況對應,建立一個詳細的醫療診斷數據倉庫,醫生可以根據這個數據倉庫進行快速、准確診斷,從而有效提高醫生的診斷效率。同時,還能准確記錄不同病種不同年齡段病人數,方便醫院管理者以後進行數據統計分析、研究。
2.在醫療保險中的應用隨著國家對醫療保險政策的不斷改革,我國住院病人中使用醫療保險進行報銷費用的比例逐年升高,由於各種原因,醫療保障制度是城鄉分離的,如何幫助醫院管理者快速而准確地掌握醫保病人費用及自費比例,是各醫院管理的一項重要工作。利用數據挖掘技術創建醫院信息系統與各類醫療保險的數據介面,建立葯品、材料、診療項目等的對照表,製作醫囑、費用傳輸模塊,實現各個醫院醫療數據上傳與下載,便於醫療保險部門和醫院管理者對醫保病人進行實時審核、監督管理,合理控制其醫療費用。
3.在醫院管理中的應用通過對醫院各種醫療數據進行採集、整理、分析與挖掘,醫院可形成一份數據完整的分析報告,能為醫院管理者們提供高質量的醫療數據結果,對決策醫院管理、控制醫療成本、掌握醫療費用、分析經濟效益、提高醫療服務質量等起到重要作用。例如,通過對病人看病等候時間、就診情況進行分析,可以優化門診就醫流程,對醫護人員配置進行相應調整,從而提高醫院工作效率,更好地為病人服務。
4.在醫療科研中的應用醫療科學研究也是醫院的重要工作之一,比如通過對歷史病例資料的整理與分析,研究者可形成一份高質量的醫療科研論文;通過對基因工程學的學習與研究,研究者能用科學的方法有效預測未來,從而獲得新品種、生產出新產品。
五、未來展望
醫學,是通過科學或技術的手段處理人體的各種疾病或病變的學科,是一門特殊專業,它具有一定的特殊性和復雜性,各個醫院在建設醫院信息化平台時應該選擇適合自己的臨床醫療數據分析與挖掘工具,充分利用好數據挖掘這一關鍵技術,對臨床醫療數據進行正確採集、分析與挖掘,盡可能大的發揮它在醫學信息獲取中的最大價值,從而更好地為醫學事業服務,為醫院工作服務,最終讓更多的患者受益終身!
參考文獻
[1]郭曉明,周明江.大數據分析在醫療行業的應用初探[J].中國數字醫學,2015(8).
[2]劉申菊,田丹.淺談數據挖掘的應用[J].價值工程,2010(36):95.
[3]廖亮.數據挖掘技術在醫療信息管理中的應用[J].中國信息科技,2016(6).
[4]陳琳.數據挖掘技術在醫療系統中的應用研究[J].機電技術,2016(6).
[5]洪松林,庄映輝,李堃.數據挖掘技術與工程實踐[M].北京:機械工業出版社,2014.
[6]周光華,辛英,張雅潔.醫療衛生領域大數據應用探討[J].中國衛生信息管理雜志,2013(4):296-300.
;『捌』 數據分析行業應用在哪些領域
1、醫療保健
醫療保健系統內生成的數據水平並非無關緊要。傳統上,由於標准化和整合數據的能力有限,醫療保健行業滯後於使用大數據分析。
但是現在,大數據分析分析通過提供個性化的醫學和處方分析而改善了醫療保健。研究人員正在挖掘數據,以查看對於特定情況更有效的治療方法,確定與葯物副作用有關的模式,並獲得其他可幫助患者並降低成本的重要信息。
2、製造業
預測性製造提供了幾乎零的停機時間和透明度。它需要大量的數據和高級的預測工具,才能系統地將數據轉化為有用的信息。
在製造業中使用大數據分析應用程序的主要好處是:產品質量和缺陷跟蹤、供應計劃、製造過程缺陷跟蹤。
『玖』 醫療領域如何利用大數據
可以根據醫療領域的痛點利用大數據分析來解決醫療領域的問題,比如 1.利用大數據採集用戶的行為分析; 2。利用大數據進行可視化查詢與分析,多維度分析,留存分析,漏斗分析,回訪分析等,深度的解決你的各種問題。