A. 大數據分析平台具有哪些價值
一、數據驅動事務
經過數據產品、數據發掘模型實現企業產品和運營的智能化,然後極大的進步企業的全體效能產出。最常見的應用領域有根據個性化推薦技術的精準營銷服務、廣告服務、根據模型演算法的風控反詐騙服務徵信服務等。
二、數據對外變現
經過對數據進行精心的包裝,對外供給數據服務,然後取得現金收入。市面上比較常見有各大數據公司利用自己把握的大數據,供給風控查詢、驗證、反詐騙服務,供給導客、導流、精準營銷服務,供給數據開放渠道服務等。
三、數據輔助決議計劃
為企業供給根底的數據計算報表分析服務。分析師能夠容易獲取數據產出分析報告指導產品和運營,產品司理能夠經過計算數據完善產品功用和改進用戶體驗,運營人員能夠經過數據發現運營問題並確定運營的策略和方向,管理層能夠經過數據把握公司事務運營情況,然後進行一些戰略決議計劃。
關於大數據分析平台具有哪些價值,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
B. 大數據如何創造價值
大數據如何創造價值
數據正形成一股湍流,滲透進全球經濟的各個領域。但這到底意味著什麼呢?盡管很多人疑惑重重,將大數據看成是對他們隱私的一種入侵。但從好的一面來看,大數據不僅有益於私人企業,也有益於國民經濟及百姓。
比如,如果美國醫療可以創造性和有效地運用大數據來驅動效率和質量,每年來自行業數據的潛在價值,估計可以超過三千億美元;其中三分之二將體現為國民醫療開支減少8%左右。在私營行業,充分使用大數據的零售商有可能將營業利潤率提高超過60%。在歐洲發達經濟體中,若政府機關使用大數據,估計僅僅在改善運行效率上就可以節省超過一千億歐元(1490億美元),這還不包括以大數據為杠桿減少詐騙、失誤和稅收缺口。
如今日益先進的技術應用於各類軟體,配合持續增長的馬力,從數據中提取有價值信息的方式也會顯著完善。用大數據在全球經濟中各行業創造價值的途徑很多。私人公司、政府和公共部門,都有很大的機會利用大數據來提高效率和提升價值。
數據已經成為一個生產要素
麥肯錫全球研究院估計2010年全球企業儲存在磁碟上的新數據超過7艾位元組,而消費者在個人電腦和筆記本等設備上儲存的新數據超過6艾位元組。1艾位元組相當於美國國會圖書館儲存信息的4000多倍。
大數據現在觸及到全球經濟的每個行業。像實體資產和人力資本等生產中的其他要素,大數據是諸多現代經濟活動順利開展不可或缺的部分。估計截至2009年,幾乎美國經濟的所有行業里,每個擁有超過1000名員工的公司至少平均儲存200兆兆位元組的數據(即1999年美國零售商沃爾瑪倉庫數據的兩倍)。
近期內最有潛力通過使用大數據來創造價值的地方是那些最發達的國家。展望未來,發展中國家只要條件適當,將會有巨大潛能利用大數據。比如,亞洲已經成為個人定位數據產生的主要區域,因為那裡有大量的手機在使用。2010年,中國估計有8億多部手機在使用,超過其他國家。此外,發展中國家和地區的一些個人企業在數據使用上比平均水平要先進。而且部分組織可藉助其遠程存儲和處理數據的能力。
在基礎科技、平台、數據處理的分析能力和使用者的行為(越來越多的個體經歷著數字化的生活)的演變和創新驅動下,大數據的未來發展有無限可能。
大數據如何創造價值
這里列舉5個大數據廣泛適用,能創造質變性的價值並影響機構的設計、組織和管理的方面。
首先,大數據能提高透明度。僅僅讓相關的利益共享者盡可能簡單及時地使用大數據就可以創造極大的價值。例如在公共行業,讓原本孤立的部門間輕易地共享數據,就能明顯減少搜索和處理時間。在製造業中,整合研發、工程和生產單位數據以實現並行工程,就能顯著縮短上實時間並提高質量。
其次,讓發現需求、尋求變化和提高性能的實驗成為可能。當組織機構創建和儲存更多數字形式的業務數據時,他們可以收集更多准確和細節的性能參數(實時或近乎實時),從產品庫存到人員病假等任何事物。
再次能針對細分人口採取定製行動。大數據允許組織機構高度細分市場,專門定製產品和提供精準服務來滿足各種需求。這種方式在市場營銷和風險管理領域眾所周知,但在其他行業可能是革命性的——比如在形成一種同等對待所有群眾的道德觀的公共行業。然而即使是已經使用市場細分多年的消費品和服務公司,也開始部署復雜的大數據技術來瞄準促銷和廣告推廣。
還能用自動化演算法取代或支持人類決策。復雜而巧妙的分析可以大幅度改善決策、降低風險和發覺有價值的觀點。對組織來說,像這樣的分析應用,從稅務機構能夠使用自動化風險引擎標記需進一步檢查的候選人,跨越到零售商可以利用演算法優化類似於自動庫存微調和專櫃店與在線銷售實時價格響應的決策過程。在某些情況下,決策不一定是自動的,但通過使用大數據技術和科技,而非小樣本的個人處理和理解電子表格來分析海量、完整的數據會增強決策。決策也許會變得不同,但一些組織已經著手通過分析來自顧客、員工,甚至嵌入在產品內的感測器中的完整數據來決策。
最後,大數據有助於革新商業模式、產品和服務。大數據能夠讓公司創造新產品和服務,強化現存功能,並創建全新的商業模式。製造業正在運用來自實際產品使用的數據,來改善下一代產品的發展並建立創新型售後服務。從導航到基於人們駕駛汽車的位置和方式的財險定價,實時定位數據的出現已經創造了一個基於定位服務的全新篇章。
可以預見,大數據應用將成為個體公司競爭和增長的關鍵基準,也將促進新一波的生產力增長和提高消費者剩餘。
C. 大數據的價值如何體現
大數據的價值如何體現_數據分析師考試
進入大數據時代,運營商應用大數據發展的驅動因素是什麼,是否需要建立新型資料庫? 劉偉光: 隨著通信行業的競爭日益激烈,傳統的語音和簡訊等主營收入的利潤不斷下滑,導致運營商必須找到新的利潤增長點,同時有效控制運營成本,從而使自身可以在激烈競爭中立於不敗之地。這也是為什麼運營商把實現精準化營銷和精細化運營提升到戰略層次的重要原因。
此外,傳統資料庫技術已無法滿足運營商對大數據充分利用的需求。新型資料庫應該具備如下特點:首先應該採用支持大規模並行處理的分布式架構;其次,應該使用基於符合工業標準的開放硬體和系統平台,保證成本可控;第三,隨著開源技術不斷成熟,創新速度快,新型資料庫平台應該易於與新的開源技術進行融合;第四,新的資料庫平台應該可以實現與Hadoop平台的無縫集成,實現跨結構化、半結構化、非結構化海量數據的混合分析能力。 盧東明: 運營商目前試圖做新型資料庫,但是不太現實,首先資料庫公司一直以來都是很穩定的幾家,需要長期積淀。
其次,大數據不是取代以前的技術,而是混合補充使用,不是新型資料庫出來後,就完全替代傳統資料庫從而大規模使用。資料庫是核心、穩定的技術,大數據是開源的軟體技術,運營商還是會選擇使用相對成熟的軟體。 《通信世界周刊》: 大數據今年以來得到格外關注,目前發展狀況如何? 盧東明: 大數據在運營商的業務中早就有應用,目前在各個省都得到普遍應用了。大數據這個詞目前有些炒作成分,它和以前的資料庫不是完全脫節的,是對資料庫的延伸。大數據是個現象,是資料庫的另一個形態,不是否定、顛覆之前的資料庫形態。
目前做大數據的廠商依然是以前那幾家數據廠商,不同的產品解決不同的問題。在中國電信行業,從數據量和應用角度來看處於世界領先地位,這是由於電信用戶多、規模大,電信業遇到的問題和挑戰比較大,解決方案難度高。 劉偉光: 目前中國三個電信運營商在業務支撐領域、網管IT支撐領域包括增值業務領域,已經隨著市場的需求推出了很多新的大數據實時分析的項目,相信未來的兩到三年這個市場將會成倍增長,甚至會到達我們今天不能預期的數量。 需要分析共享大數據的管理工具 《通信世界周刊》: IT企業如何依託大數據為運營商提供管理工具,提升運營效率? 劉偉光: 實現各部門的緊密協作永遠都是提升運營效率的不二法門。而IT企業應該為運營商提供實現緊密協作、分析、共享大數據的管理工具,來達成提升運營效率的目標。
此外,大數據時代,IT企業僅僅為運營商提供分析平台、分析工具是不夠的。這是因為運營商雖然很了解業務和需求,但普遍缺乏數學建模能力,因此很難利用好這些平台,使其發揮最大效益。所以,如何利用這些平台、系統和數據實現科學建模,同樣是提升運營效率的關鍵所在。 武新: 運營商要解決數據處理效率問題,現在的數據用以前的系統處理需要一天一夜,而應用大數據技術處理可以一個小時完成。在大數據平台,應用雲技術,通過集群的方式,幾十台伺服器同時工作,並進行壓縮數據來節省空間。
目前大數據主要是針對結構化數據的應用,用戶上哪個網,停留多長時間,通過分析都可做相應的分析結果推送給相關部門。除了對用戶上網行為分析,還有網路使用情況、網路設備情況和用戶使用手機類型分析。而對非結構化的數據,如視頻和圖片,目前分析得還較少。 《通信世界周刊》: 大數據具體應用於運營商的哪些業務中,有哪些成功的應用和案例? 盧東明: 大數據主要應用在運營商的「信令」系統分析上,由於其數據量非常大,比「話單」分析的挑戰大很多。移動互聯網發展起來之後,運營商開始關注大數據,進行「用戶行為分析」,根據人群分析做精準營銷,推薦流量套餐。
此外,運營商提供IDC服務,通過「雲」中心的方式為互聯網企業提供服務。 武新: 運營商從最近兩三年開始,感受到這方面的壓力,開始尋求解決方案。中國移動「信令」分析系統項目對海量數據進行分析和挖掘;中國聯通對「話單」數據進行用戶行為分析。中國電信「新一代資料庫」產品正在測試中,通過精分系統,進行精準營銷。此外,在運營商專網也已應用大數據。運營商目前仍處於測試探索中,通過幾種方法針對不同的應用進行測試、篩選。
目前運營商的相關項目有「流量分析」、「智能管道」和「新一代資料庫」產品等,傳統的資料庫面對海量數據已經無法支撐,將來會慢慢被大數據代替掉。 要有開放的心態 《通信世界周刊》: 發展大數據需要解決哪些問題,關鍵點是什麼? 盧東明: 由於數據分析要看存儲效果,涉及到效率和速度。目前運營商應用大數據存在的問題是避免無限制的花錢。另一方面,運營商要和廠商合作,針對不同的業務類型和應用場景,採取不同的分析方法。此外,運營商要有開放的心態,因為大數據作為開源的軟體也不是可以解決所有的問題的。 武新: 在數據處理上,運營商轉型中不僅有技術上的問題,還需要經歷一個時間階段和過程。
此外,運營商要轉變思維方式,其在數據分析上的經驗不如互聯網企業,這是方法論問題,關繫到如何用數據做生意。運營商以前都是依託傳統業務,海量數據的出現,使得行業即將洗牌,運營商不得不轉型重視數據挖掘。 但運營商可以發揮自己的優勢,首先,要分析用戶行為的變化,由分析以前的語音用戶轉變為分析上網行為。其次,運營商有能力提供類似互聯網公司的服務,如QQ聊天。
最後,運營商有專網資源,有自己的數據中心可以運維,但是目前這些優勢還沒有完全發揮出來,是因為還沒把握透用戶的需求。
以上是小編為大家分享的關於大數據的價值如何體現的相關內容,更多信息可以關注環球青藤分享更多干貨
D. 大數據分析平台的核心價值是什麼
一、數據驅動業務
通過數據產品、數據挖掘模型實現企業產品和運營的智能化,從而極大的提高企業的整體效能產出。最常見的應用領域有基於個性化推薦技術的精準營銷服務、廣告服務、基於模型演算法的風控反欺詐服務徵信服務等。
二、數據對外變現
通過對數據進行精心的包裝,對外提供數據服務,從而獲得現金收入。市面上比較常見有各大數據公司利用自己掌握的大數據,提供風控查詢、驗證、反欺詐服務,提供導客、導流、精準營銷服務,提供數據開放平台服務等。
三、數據輔助決策
為企業提供基礎的數據統計報表分析服務。分析師能夠輕易獲取數據產出分析報告指導產品和運營,產品經理能夠通過統計數據完善產品功能和改善用戶體驗,運營人員可以通過數據發現運營問題並確定運營的策略和方向,管理層可以通過數據掌握公司業務運營狀況,從而進行一些戰略決策。
關於大數據分析平台的核心價值是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
E. 什麼是數據中台數據中台帶來了哪些價值
數據中台的含義和價值如下:
含義:簡單來說,數據中台就是企業用戶數據的鏈接樞紐,數據中台的搭建就是以數據創造價值的過程。它通過多維度、立體化的線上線下數據採集工具和方法,打破數據壁壘,講數據整合,並搭建數據平台。
價值:數據中台可以幫助企業進行數據加工、數據處理、數據分析和數據建模,讓數據價值達到最大化。利用數據中台可以打通營銷、銷售、服務、售後、復購等環節,全面管理多源數據,進而打造出一套高效的用戶管理體系,幫助企業進行用戶管理,提升用戶體驗,推進營銷數字化。
數據的范疇:
數據是指對客觀事件進行記錄並可以鑒別的符號,是對客觀事物的性質、狀態以及相互關系等進行記載的物理符號或這些物理符號的組合。它是可識別的、抽象的符號。
它不僅指狹義上的數字,還可以是具有一定意義的文字、字母、數字元號的組合、圖形、圖像、視頻、音頻等,也是客觀事物的屬性、數量、位置及其相互關系的抽象表示。例如,「0、1、2…」、「陰、雨、下降、氣溫」、「學生的檔案記錄、貨物的運輸情況」等都是數據。數據經過加工後就成為信息。
在計算機科學中,數據是所有能輸入計算機並被計算機程序處理的符號的介質的總稱,是用於輸入電子計算機進行處理,具有一定意義的數字、字母、符號和模擬量等的通稱。計算機存儲和處理的對象十分廣泛,表示這些對象的數據也隨之變得越來越復雜。
F. 如何構建企業級大數據平台,發揮數據大價值
大數據能夠幫助企業預測經濟形勢、把握市場態勢、了解消費需求、提高研發效率,不僅具有巨大的潛在商業價值,而且為企業提升競爭力提供了新思路。企業怎樣利用大數據提升競爭力?樂思軟體這里從企業決策、成本控制、服務體系、產品研發四個方面加以簡要討論。
企業決策大數據化。現代企業大都具備決策支持系統,以輔助決策。但現行的決策支持系統僅搜集部分重點數據,數據量小、數據面窄。企業決策大數據化的基礎是企業信息數字化,重點是數據的整理分析。首先,企業需要進行信息數字化採集系統的更新升級。按各決策層級的功能建立數據採集系統,以橫向、縱向、實時三維模式廣泛採集數據。其次,企業需要推進決策權力分散化、前端化、自動化。對多維度的數據進行提煉整合,在人為影響起主要作用的頂層,提高決策指標信息含量和科學性;在人為影響起次要作用的底層,推進決策指標量化,完善決策支持系統和決策機制。大數據決策機制讓數據說話,可以減少人為干擾因素,提高決策精準度。
成本控制大數據化。目前,很多企業在采購、物流、儲存、生產、銷售等環節引入了成本控制系統,但系統間融合度較低。企業可對現有成本控制系統進行改造升級,打造大數據綜合成本控制系統。其一,在成本控制的全過程採集數據,以求最大限度地描述事物,實現信息數字化、數據大量化。其二,推進成本控制標准、控制機理系統化。量化指標,實現成本控制自動化,減少人為因素干擾;細化指標,以獲取更精確的數據。其三,構建綜合成本控制系統,將成本控制所涉及的從原材料采購到產品生產、運輸、儲存、銷售等環節有機結合起來,形成一個綜合評價體系,為成本控制提供可靠依據。成本控制大數據化以預先控制為主、過程式控制制為中、產後控制為輔的方式,可以最大限度降低企業運營成本。
服務體系大數據化。品牌和服務是企業的核心競爭力,服務體系直接影響企業的生存發展。優化服務體系的重點是健全溝通機制、聯絡機制和反饋機制,利用大數據優化服務體系的關鍵是找到服務體系中存在的問題。首先,加強數據收集,對消費者反饋的信息進行分類分析,找到服務體系的問題,然後對症下葯,建立高效服務機制,提高服務效率。其次,將服務方案移到線上,打造自動化服務系統。快速分析、比對消費者服務需求信息,比對成功則自動進入服務程序,實現快速處理;比對失敗則轉入人工服務系統,對新服務需求進行研究處理,並快速將新服務機制添加至系統,優化服務系統。服務體系大數據化,可以實現服務體系的高度自動化,最大程度提高服務質量和效率。
產品研發大數據化。產品研發存在較高風險。大數據能精確分析客戶需求,降低風險,提高研發成功率。產品研發的主要環節是消費需求分析,產品研發大數據化的關鍵環節是數據收集、分類整理和分析利用。企業官網的消費者反饋系統、貼吧、論壇、新聞評價體系等是消費者需求信息的主要來源,應注重從中收集數據。同時,可與論壇、貼吧、新聞評價體系合作構建消費者綜合服務系統,完善消費者信息反饋機制,實現信息收集大量化、全面化、自動化,為產品研發提供信息源。然後,對收集的非結構化數據進行分類整理,以達到精確分析消費需求、縮短產品研發周期、提高研發效率的目的。產品研發大數據化,可以精準分析消費者需求,提高產品研發質量和效率,使企業在競爭中占據優勢。