A. 半結構化數據的簡介
半結構化數據(semi-structured data)
在做一個信息系統設計時肯定會涉及到數據的存儲,一般我們都會將系統信息保存在某個指定的關系資料庫中。我們會將數據按業務分類,並設計相應的表,然後將對應的信息保存到相應的表中。比如我們做一個業務系統,要保存員工基本信息:工號、姓名、性別、出生日期等等;我們就會建立一個對應的staff表。
但不是系統中所有信息都可以這樣簡單的用一個表中的欄位就能對應的。
B. 請問大數據包括哪些數據類型
大數據的數據類型有:
1、結構化數據:能夠用數據或統一的結構加以表示,人們稱之為結構化數據,如數字、符號;
2、半結構化數據:所謂半結構化數據,就是介於完全結構化數據和完全無結構的數據之間的數據,XML、HTML文檔就屬於半結構化數據;
3、非結構化數據:非結構化資料庫是指其欄位長度可變,並且每隔欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據,而且更適合處理非結構化數據。
更多關於大數據包括哪些數據類型,進入:https://m.abcgonglue.com/ask/64fefd1615831522.html?zd查看更多內容
C. 人為生成的非結構化數據包括哪些
典型的人為生成的非結構化數據包括:
·文本文件:文字處理、電子表格、演示文稿、電子郵件、日誌。
·電子郵件:電子郵件由於其元數據而具有一些內部結構,我們有時將其稱為半結構化。但是,消息欄位是非結構化的,傳統的分析工具無法解析它。
·社交媒體:來自新浪微博、微信、QQ、Facebook,Twitter,LinkedIn等平台的數據。
·網站: YouTube,Instagram,照片共享網站。
·移動數據:簡訊、位置等。
·通訊:聊天、即時消息、電話錄音、協作軟體等。
·媒體:MP3、數碼照片、音頻文件、視頻文件。
·業務應用程序:MS Office文檔、生產力應用程序。
典型的機器生成的非結構化數據包括:
·衛星圖像:天氣數據、地形、軍事活動。
·科學數據:石油和天然氣勘探、空間勘探、地震圖像、大氣數據。
·數字監控:監控照片和視頻。
·感測器數據:交通、天氣、海洋感測器。
D. 大數據的表現形態有哪些
大數據裡面的數據,分三種類型:
(1)結構化的數據:即有固定格式和有限長度的數據。
(2)非結構化的數據:現在非結構化的數據越來越多,就是不定長、無固定格式的數據,例如網頁、語音,視頻等。
(3)半結構化數據:是一些XML或者HTML的格式的數據。
E. 什麼是結構化數據什麼是半結構化數據
結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)
非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等
對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖象、聲音、影視、超媒體等信息)。
非結構化WEB資料庫主要是針對非結構化數據而產生的,與以往流行的關系資料庫相比,其最大區別在於它突破了關系資料庫結構定義不易改變和數據定長的限制,支持重復欄位、子欄位以及變長欄位並實現了對變長數據和重復欄位進行處理和數據項的變長存儲管理,在處理連續信息(包括全文信息)和非結構化信息(包括各種多媒體信息)中有著傳統關系型資料庫所無法比擬的優勢。
F. 什麼是結構化數據,非結構化數據和半結構化數據
相對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
欄位可根據需要擴充,即欄位數目不定,可稱為半結構化數據,例如Exchange存儲的數據。
非結構化資料庫
在信息社會,信息可以劃分為兩大類。一類信息能夠用數據或統一的結構加以表示,我們稱之為結構化數據,如數字、符號;而另一類信息無法用數字或統一的結構表示,如文本、圖像、聲音、網頁等,我們稱之為非結構化數據。結構化數據屬於非結構化數據,是非結構化數據的特例
數據清洗從名字上也看的出就是把「臟」的「洗掉」。因為數據倉庫中的數據是面向某一主題的數據的集合,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為「臟數據」。我們要按照一定的規則把「臟數據」「洗掉」,這就是數據清洗.而數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之後再進行抽取。不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。
(1)不完整的數據
這一類數據主要是一些應該有的信息缺失,如供應商的名稱、分公司的名稱、客戶的區域信息缺失、業務系統中主表與明細表不能匹配等。對於這一類數據過濾出來,按缺失的內容分別寫入不同Excel文件向客戶提交,要求在規定的時間內補全。補全後才寫入數據倉庫。
(2)錯誤的數據
這一類錯誤產生的原因是業務系統不夠健全,在接收輸入後沒有進行判斷直接寫入後台資料庫造成的,比如數值數據輸成全形數字字元、字元串數據後面有一個回車操作、日期格式不正確、日期越界等。這一類數據也要分類,對於類似於全形字元、數據前後有不可見字元的問題,只能通過寫SQL語句的方式找出來,然後要求客戶在業務系統修正之後抽取。日期格式不正確的或者是日期越界的這一類錯誤會導致ETL運行失敗,這一類錯誤需要去業務系統資料庫用SQL的方式挑出來,交給業務主管部門要求限期修正,修正之後再抽取。
(3)重復的數據
對於這一類數據——特別是維表中會出現這種情況——將重復數據記錄的所有欄位導出來,讓客戶確認並整理。
數據清洗是一個反復的過程,不可能在幾天內完成,只有不斷的發現問題,解決問題。對於是否過濾,是否修正一般要求客戶確認,對於過濾掉的數據,寫入Excel文件或者將過濾數據寫入數據表,在ETL開發的初期可以每天向業務單位發送過濾數據的郵件,促使他們盡快地修正錯誤,同時也可以做為將來驗證數據的依據。數據清洗需要注意的是不要將有用的數據過濾掉,對於每個過濾規則認真進行驗證,並要用戶確認。
隨著網路技術的發展,特別是Internet和Intranet技術的飛快發展,使得非結構化數據的數量日趨增大。這時,主要用於管理結構化數據的關系資料庫的局限性暴露地越來越明顯。因而,資料庫技術相應地進入了「後關系資料庫時代」,發展進入基於網路應用的非結構化資料庫時代。所謂非結構化資料庫,是指資料庫的變長紀錄由若干不可重復和可重復的欄位組成,而每個欄位又可由若干不可重復和可重復的子欄位組成。簡單地說,非結構化資料庫就是欄位可變的資料庫。
我國非結構化資料庫以北京國信貝斯(iBase)軟體有限公司的iBase資料庫為代表。IBase資料庫是一種面向最終用戶的非結構化資料庫,在處理非結構化信息、全文信息、多媒體信息和海量信息等領域以及Internet/Intranet應用上處於國際先進水平,在非結構化數據的管理和全文檢索方面獲得突破。它主要有以下幾個優點:
(1)Internet應用中,存在大量的復雜數據類型,iBase通過其外部文件數據類型,可以管理各種文檔信息、多媒體信息,並且對於各種具有檢索意義的文檔信息資源,如HTML、DOC、RTF、TXT等還提供了強大的全文檢索能力。
(2)它採用子欄位、多值欄位以及變長欄位的機制,允許創建許多不同類型的非結構化的或任意格式的欄位,從而突破了關系資料庫非常嚴格的表結構,使得非結構化數據得以存儲和管理。
(3)iBase將非結構化和結構化數據都定義為資源,使得非結構資料庫的基本元素就是資源本身,而資料庫中的資源可以同時包含結構化和非結構化的信息。所以,非結構化資料庫能夠存儲和管理各種各樣的非結構化數據,實現了資料庫系統數據管理到內容管理的轉化。
(4)iBase採用了面向對象的基石,將企業業務數據和商業邏輯緊密結合在一起,特別適合於表達復雜的數據對象和多媒體對象。
(5)iBase是適應Internet發展的需要而產生的資料庫,它基於Web是一個廣域網的海量資料庫的思想,提供一個網上資源管理系統iBase Web,將網路伺服器(WebServer)和資料庫伺服器(Database Server)直接集成為一個整體,使資料庫系統和資料庫技術成為Web的一個重要有機組成部分,突破了資料庫僅充當Web體系後台角色的局限,實現資料庫和Web的有機無縫組合,從而為在Internet/Intranet上進行信息管理乃至開展電子商務應用開辟了更為廣闊的領域。
(6)iBase全面兼容各種大中小型的資料庫,對傳統關系資料庫,如Oracle、Sybase、SQLServer、DB2、Informix等提供導入和鏈接的支持能力。
通過從上面的分析後我們可以預言,隨著網路技術和網路應用技術的飛快發展,完全基於Internet應用的非結構化資料庫將成為繼層次資料庫、網狀資料庫和關系資料庫之後的又一重點、熱點技術
G. 結構化數據和非結構化數據是什麼意思
結構化數據和非結構化數據是大數據的兩種類型,這兩者之間並不存在真正的沖突。客戶如何選擇不是基於數據結構,而是基於使用它們的應用程序:關系資料庫用於結構化數據,大多數其他類型的應用程序用於非結構化數據。
結構化數據也稱作行數據,是由二維表結構來邏輯表達和實現的數據,嚴格地遵循數據格式與長度規范,主要通過關系型資料庫進行存儲和管理。
與結構化數據相對的是不適於由資料庫二維表來表現的非結構化數據,包括所有格式的辦公文檔、XML、HTML、各類報表、圖片和音頻、視頻信息等。
(7)半結構化數據包括哪些擴展閱讀
結構化和非結構化數據之間的差異除了存儲在關系資料庫和存儲非關系資料庫之外的明顯區別之外,最大的區別在於分析結構化數據與非結構化數據的便利性。針對結構化數據存在成熟的分析工具,但用於挖掘非結構化數據的分析工具正處於萌芽和發展階段。
並且非結構化數據要比結構化數據多得多。非結構化數據占企業數據的80%以上,並且以每年55%~65%的速度增長。如果沒有工具來分析這些海量數據,企業數據的巨大價值都將無法發揮。
H. 半結構化數據的數據分類
這樣的數據和上面兩種類別都不一樣,它是結構化的數據,但是結構變化很大。因為我們要了解數據的細節所以不能將數據簡單的組織成一個文件按照非結構化數據處理,由於結構變化很大也不能夠簡單的建立一個表和他對應。本文主要討論針對半結構化數據存儲常用的兩種方式。
先舉一個半結構化的數據的例子,比如存儲員工的簡歷。不像員工基本信息那樣一致每個員工的簡歷大不相同。有的員工的簡歷很簡單,比如只包括教育情況;有的員工的簡歷卻很復雜,比如包括工作情況、婚姻情況、出入境情況、戶口遷移情況、黨籍情況、技術技能等等。還有可能有一些我們沒有預料的信息。通常我們要完整的保存這些信息並不是很容易的,因為我們不會希望系統中的表的結構在系統的運行期間進行變更。
I. 人們生活中接觸到的大部分數據是半結構化數據嗎
應該說大部分是非結構化數據,例如一段話、一段音樂、一段視頻。半結構化的數據一般是已經存在屬性的數據,例如一封簡歷包括姓名、學歷、工作經歷等。
J. 大數據有哪些類型
1、結構化數據
可以以固定格式存儲,訪問和處理的數據稱為“結構化數據”。由於此數據採用類似的格式,因此企業可以通過執行分析來獲得最大的收益。還發明了各種先進技術來從結構化數據中提取數據驅動的決策。但是,由於結構化數據的創建已經達到Zettabytes標記,因此世界正朝著這樣一個程度發展。
2、非結構化數據
任何以未知形式或結構出現的數據都屬於非結構化數據。處理非結構化數據並對其進行分析以獲取數據驅動的答案是一項艱巨的任務,因為它們來自不同類別,將它們放在一起只會使情況變得更糟。包含簡單文本文件,圖像,視頻等的組合的異構數據源是非結構化數據的示例。
3、半結構化數據
半結構化數據中同時具有結構化和非結構化數據。我們可以看到半結構化數據是形式化的結構,但實際上它不是在關系DBMS中用表定義來定義的。Web應用程序數據是半結構化數據的示例。它具有非結構化數據,例如日誌文件,事務歷史記錄文件等。OLTP系統旨在與結構化數據一起工作,其中數據存儲在關系中。