導航:首頁 > 數據處理 > 國務院大數據是怎麼形成的

國務院大數據是怎麼形成的

發布時間:2022-12-18 12:43:00

㈠ 國家大數據為什麼建在貴州

國家大數據建在貴州的原因:

一是先天優勢。

大數據需要數據中心承載,大型數據中心需要建在氣候涼爽、電力充足、沒有地震的地方。貴州具有清新的空氣,涼爽的天氣兩口氣,能源充沛,地質穩定,工信部評估報告顯示,貴州是中國南方最適合建設大型綠色數據中心的地區。國家第一批綠色數據中心84個試點中,貴州有12個,位列全國第一。

二是先發優勢。

2014年3月1日貴州在北京舉辦的大數據推介會,拉開了貴州發展大數據的大幕,總體上比國內其他地區搶跑了兩年,形成了率先獲批建設首個國家大數據綜合試驗區,貴陽·貴安大數據產業發展集聚區,貴陽大數據技術創新試驗區。

貴州省建成全國第一個省級政府數據集聚、共享、開放的雲上貴州系統平台;設立全球第一個大數據交易所等等一系列的率先。

三是先行優勢。

大數據是新生事物,應用模式和產業模式都需要創新,需要試驗,需要人才。貴州堅持在大數據政用、民用、商用領域開展先行先試,通過政府領跑+社會群跑,充分發揮政府在大數據發展中的引導和推動作用,著力形成政府、企業、社會三方發展合力。

㈡ 大數據發展的根基是什麼

大數據發展的根基是什麼

大數據活在「雲端」!唯有雲計算能讓大數據找到自己的軌跡和存在的真正價值;但大數據不是無根的浮雲,它有自己的根,源源不斷輸送數據的根。

那麼,大數據的「根」在哪裡?日前國務院出台的《促進大數據發展行動綱要》(以下簡稱《行動綱要》)或許可以讓我們找到答案。

《行動綱要》明確提出了促進大數據發展的三大重點任務和十項工程。三大重點任務之首即加快政府數據開放共享,推動資源整合;十項工程前四大工程涉及政府信息,即:政府數據資源共享開放工程、國家大數據資源統籌發展工程、政府治理大數據工程、公共服務大數據工程。不難發現,三大重點任務、十項工程的關鍵詞就是共享,而政府數據的開放共享是核心。

共享是大數據的「根」

大數據與雲計算,或許就像一枚神奇的金幣之正反面,讓許多人感覺「雲里霧里」、亦真亦幻,卻又能真切地感受到金幣的光芒。

什麼是大數據?按照維基網路的定義,大數據是指無法在可承受時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。大數據的基本特點可以概括為「4V」:大量化(Volume)多樣化(Variety)、快速化(Velocity)、價值化(Value),即海量的數據規模、快速的數據流動和動態的數據體系、多樣的數據類型、巨大的數據價值。

而《大數據時代》的作者維克托·邁爾·舍恩伯格給出的解釋或許更易於理解,他認為,「大數據」並不是很大或者很多數據,並不是一部分數據樣本,而是關於某個現象的所有數據。比如說關於一家企業的數據信息,除了企業名稱、法定代表人、注冊資本、經營范圍等基本信息外,還包括財務信息、經營信息、外部關聯關系、誠信狀況等信息。大量、多維、立體、交織信息的匯集,就可以為不同主體、基於不同需求分析企業提供數據基礎。

如果將單個或局部領域的數據及其挖掘處理視為小數據,那麼關於某一主體的大數據就是由成千上萬、相互關聯、相互交織的小數據匯聚而成的。小數據的充分融合,就是大數據形成的根基。譬如一滴水,唯有與別的水滴融合在一起,才能形成水流,才能匯成江河、海洋,才能發揮水的價值。這種融合就是共享。沒有小數據的共享,就沒有大數據生長的「根」。

要從海量的數據中快速地分析、挖掘出有用的信息,單台計算機已難以勝任,必須採用分布式架構,依託雲計算的分布式處理、分布式數據和雲存儲、虛擬化技術,即透過網路將龐大的計算處理程序自動分拆成無數個較小的子程序,再交由多部伺服器所組成的龐大系統經搜尋、計算、分析之後將處理結果回傳給用戶。這就是與大數據相依相存的雲計算。顯然,如果沒有數據的共享,雲計算也是「無米之炊」。

當然,數據能否共享,涉及到數據的開放性、法律邊界、數據價值實現等問題,還面臨諸多現實障礙。

誰阻礙了數據共享?

當我們沉醉於大數據的奇妙與魔法無邊的時候,現實世界卻給了我們一記響亮的耳光!我們會沮喪地發現,許多政府公共信息仍處於零散、分割、封閉狀態!

各級政府部門在履職過程中掌握了大量的數據信息,其中涉及企業(個人)的數據最為豐富。目前普遍認為比較有用的企業信息大致包括四個方面。

一是反映企業基本情況的信息。包括:工商部門提供的企業注冊登記信息,注冊資本、股東及高管變更情況等;環保部門提供的企業環境違法處罰信息、環評審批、排污許可證和排污權抵押登記情況等;質監、安監、食品葯監、衛生等部門提供的各項資質信息。

二是反映企業真實經營狀況的信息。包括:稅務部門提供的企業應稅銷售額,納稅、退稅情況等;人力社保部門提供的企業社保繳納、勞動爭議情況、勞動保障書面審查信息等;海關部門提供的進出口信息、企業報關情況等;水、電、氣部門提供的繳費及欠費情況等。

三是反映企業及企業主資信狀況及守法情況的信息。包括:公安、法院等部門提供的企業或企業主的司法訴訟、執行、查封信息等;工商、環保、人社、稅務、質監、安監、食品葯監、衛生、海關等部門提供的處罰信息。

四是反映企業融資、財產抵質押、對外擔保等情況的信息。包括:人民銀行[微博]徵信系統提供的貸款、質押信息,工商部門提供的股權轉讓、抵押、查封信息等;房產部門提供的房地產權屬、抵押、查封、租賃信息等。

這些涉及企業的各種信息資源散落在不同的政府管理部門,總體處於彼此分割、孤立、封閉狀態,沒有實現數據之間的共享、連接和融合,更談不上大數據價值的體現。

盡管近年來,各級政府都在積極搭建公共信用信息平台,推動社會徵信體系建設,特別是《國務院關於印發社會信用體系建設規劃綱要(2014—2020年)的通知》出台後,步伐進一步加快,各部門也大多建立了自身的信息管理系統,但部門之間信息不共享或共享不充分仍是常態。即使有一些全國性、地區性的統一信息平台,如「全國企業信用信息公示系統」「信用浙江」等,所含企業信息也非常有限,且不完整、不及時。

這種信息割裂的狀態,不僅不利於大數據的發展,從眼前看,則對具體運用大數據的相關主體的發展形成阻礙。比如,銀行業在服務實體經濟特別是小微企業過程中,面臨的突出瓶頸之一,就是信息瓶頸。銀行業開展小微企業信貸業務面臨的最大困惑是信息不對稱。信息的不對稱使銀行在發放小微企業貸款時難免「如履薄冰」,顧忌甚多。因此,能否切實掌握和了解反映企業真實經營狀況、企業及企業主資信狀況等相關信息,在很大程度上決定了銀行對小微企業放貸的意願以及介入小微企業信貸領域的深度。

目前客觀存在的企業信息難共享之格局,根源在於部門利益。相關政府部門在參與公共信用信息平台建設時,出於種種原因,往往叫得響、做得少。一些部門出於自身商業利益,將自身所擁有的大量公共信息視為「私有財產」,以有償作為提供信息的條件;或以維護商業秘密、涉及部門機密為由,不願將擁有的、本屬於公共資源的企業信息與其他部門共享,或者象徵性地扔幾根「骨頭」,人為造成了企業信息的分割、殘缺,也造就了許多「僵屍」信息平台;有些信息的共享按說不應存在障礙,只因為一些數據擁有的部門感覺「吃力不討好」,缺乏主動提供數據的動力。

當然,也不排除個別地方政府從局部利益出發,對可能影響當地企業發展的行政處罰類負面、失信信息的公開加以阻擾,影響信息數據的共享。深層的原因,則是社會信用體系建設法制化步伐緩慢,公共信息徵集機制不健全,對相關部門提供、公開相關政務信息缺乏有效的約束,以及信用信息使用在公開與保密之間的法律邊界不清晰。

怎樣走向數據共享?

《行動綱要》把加快政府數據開放共享、推動資源整合列為首要任務,把推動政府數據資源共享開放工程、國家大數據資源統籌發展工程、政府治理大數據工程、公共服務大數據工程等工程建設作為促進大數據發展的基礎設施工程。說明政府高層對信息共享問題的高度關注。

顯然,推動數據共享的起點是政府部門間的信息共享,而這恰恰是難點所在。這是一個系統性艱巨工程,也是一個漸進的過程,既需要加快社會徵信體系的法制化進程,更需要政府及相關部門創新思維。

搭建統一、公開、透明的社會信用信息共享平台,有效整合政府各部門信息。對於擁有各種管理資源的政府而言,搭建一個比較完備的信息平台框架似乎並不難,難就難在能否實現信息的充分共享。如何讓信息平台所涉及的政府部門主動、及時、充分地將自身所擁有、可公開的數據信息共享到統一的信息平台,關鍵是要強化信息徵集的行政約束力,建立公共信息共享平台的保障機制。

在現行體制下,筆者以為政績考核「指揮棒」或是推動信息共享之「神器」。應以推動《社會信用體系建設規劃綱要(2014—2020年)》實施、落實政務公開制度為抓手,將公共信用信息共享系統數據信息的報送納入政府對相關部門的考核,前提是要充分研究和界定各類信息公開的法律邊界,特別是在對各類違法違規信息、不誠信行為信息的公開方面,應明確可以採取的共享方式和程度,以打消信息發布各方的顧慮。在此基礎上,制定清晰的公共信息共享清單,明確相應的責任與義務。

小數據不能共享,大數據必是空談。所以,看大勢、顧大局、破本位,推進小數據共享,是政府部門在大數據時代應有的思維。

以上是小編為大家分享的關於大數據發展的根基是什麼的相關內容,更多信息可以關注環球青藤分享更多干貨

㈢ 大數據現象是怎麼形成的

大數據是無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。


(3)國務院大數據是怎麼形成的擴展閱讀

大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。

大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。

㈣ 什麼是大數據 大數據是什麼意思

大數據是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。


(4)國務院大數據是怎麼形成的擴展閱讀

大數據的價值體現在以三方面:

1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;

2、做小而美模式的中小微企業可以利用大數據做服務轉型;

3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

㈤ 我國大數據發展的現狀是怎樣的

隨著信息技術和人類生產生活交匯融合,全球數據呈現爆發增長、海量集聚的特點。無論是國家、企業還是社會公眾,都越來越認識到數據的價值。因此,近年來,各地紛紛成立大數據發展局,企業紛紛推動數據資產治理,大數據輻射的行業也從傳統的電信、金融逐漸擴展到工業、醫療、教育等。一時間,彷彿各行各業都在談大數據,人人都在談大數據。但也有聲音說大數據迎來了「七年之癢」,面對大數據熱潮也需要一些「冷思考」。我國大數據究竟發展得如何?未來我國大數據發展還有哪些機遇和挑戰?

1、大數據產業進展顯著
過去幾年,大數據理念已經深入人心,「用數據說話」已經成為所有人的共識,數據也成了堪比石油、黃金、鑽石的戰略資源。五年來,我國大數據產業政策日漸完善,技術、應用和產業都取得了非常明顯的進展。
在政策方面,我國從中央到地方的大數據政策體系已經基本完善,目前已經進入落地實施階段。自從2014年「大數據」這個詞寫入政府工作報告以來,我國大數據發展的政策環境掀開了全新的篇章。在頂層設計上,國務院《促進大數據發展行動綱要》對政務數據共享開放、產業發展和安全三方面做了總體部署。《政務信息資源共享管理暫行辦法》《大數據產業發展規劃(2016-2020)》等文件也都已經出台。十九大報告中提出「推動大數據與實體經濟深度融合」,「十三五」規劃中提出「實施國家大數據戰略」。衛健、農業、環保、檢察、稅務等部門還出台了領域大數據發展的具體政策。截至2019年初,所有省級行政區都發布了大數據相關的發展規劃,十幾個省市設立了大數據管理局,8個國家大數據綜合試驗區、11個國家工程實驗室啟動建設。可以說,大數據的政策體系已經基本搭建完成,目前已經紛紛進入落地實施甚至評估檢查階段。
在技術方面,我國大數據技術發展屬於「全球第一梯隊」,但國產核心技術能力嚴重不足。我國獨有的大體量應用場景和多類型實踐模式,促進了大數據領域技術創新速度和能力水平,處於國際領先地位。在技術全面性上,我國平台類、管理類、應用類技術均具有大面積落地案例和研究;在應用規模方面,我國已經完成大數據領域的最大集群公開能力測試,達到了萬台節點;在效率能力方面,我國大數據產品在國際大數據技術能力競爭平台上也取得了前幾名的好成績;在知識產權方面,2018年我國大數據領域專利公開量約佔全球的40%,位居世界第二。但我國大數據技術大部分為基於國外開源產品的二次改造,核心技術能力亟待加強。例如,目前國內主流大數據平台技術中,自研比例不超過10%。
在產業方面,我國大數據產業多年來保持平穩快速增長,但面臨提質增效的關鍵轉型。2018年,我國大數據產業延續多年來的增速,繼續保持相對高速的增長。根據中國信息通信研究院的測算,2018年我國大數據產業整體規模有望達到5400億元,同比增長15%。然而,綜合國內外環境、新興技術發展等多種因素,大數據產業的增速出現了下滑。我國的大數據產業也面臨著從高速發展向高質量發展的關鍵轉型期。
在應用方面,大數據的行業應用更加廣泛,正加速滲透到經濟社會的方方面面。隨著大數據工具的門檻降低以及企業數據意識的不斷提升,越來越多的行業開始嘗到大數據帶來的「甜頭」。無論是從新增企業數量、融資規模還是應用熱度來說,與大數據結合緊密的行業正在從傳統的電信業、金融業擴展到政務、健康醫療、工業、交通物流、能源行業、教育文化等,行業應用「脫虛向實」趨勢明顯,與實體經濟的融合更加深入。
2、產業的五大困局
雖然我國大數據總體發展形勢良好,也面臨難得的發展機遇,但仍然存在一些困難和問題。
一是,涉及核心技術的產業發展薄弱,未能有效提升我國核心技術競爭力。核心技術的影響力在大數據產業有著極高的重要性。由於大數據企業在完成產品開發後,可以近乎零成本無限制的復制,因此擁有核心技術的大企業,很容易將技術優勢轉化為市場優勢,即憑借具體的信息產品贏得海量用戶獲得壟斷地位。當前,從大數據技術與產品的供給側看,我國雖然在局部技術實現了單點突破,但大數據領域系統性、平台級核心技術創新仍不多見。大數據處理工具都是「他山之石」,大部分企業用的都是國外的數據採集、數據處理、數據分析、數據可視化技術,自主核心技術突破還有待時日。尤其是開源產品的技術標准方面,我國的影響力尚亟待提升。
二是,數據孤島和壁壘降低了大數據產業資源配置效率。大數據產業發展必須實現數據信息的自由流動和共享,如果數據不開放、不共享,數據整合就不能實現,數據價值也會大大降低。無論是政府數據、互聯網數據還是其他數據,數據擁有者往往不願對其進行開放流通。受制於前期信息基礎設施建設,目前我國政府數據往往還存在著諸多「數據孤島」和「數據煙囪」,數據價值難以發揮。
三是,數據安全管理薄弱增加了大數據產業的發展風險。大數據技術為經濟社會發展帶來創新活力的同時,也使數據安全、個人信息保護乃至大數據平台安全等面臨新威脅與新風險。海量多源數據在大數據平台匯聚,來自多個用戶的數據可能存儲在同一個數據池中,並分別被不同用戶使用,極易引發數據泄露風險。利用大數據技術對海量數據(21.90 -5.19%,診股)進行挖掘分析所得結果可能包含涉及國家經濟社會等各方面的敏感信息,需要對分析結果的共享和披露加強安全管理。
四是,產業壟斷與惡性競爭現象頻發,「劣幣驅逐良幣」現象明顯。由於資源型產業門檻低、利潤高,新興的大數據企業往往首先將目光盯在獲取數據資源上面。大量依託數據資源優勢的企業誕生,為大數據產業帶來了低附加值的壟斷經濟模式,使得依靠技術壁壘打江山的企業不得不面對殘酷的市場競爭,放緩了技術研發的步伐。同時,數據壟斷問題也愈發明顯。少數互聯網巨頭企業擁有巨大數據,不但對產業發展不利,甚至存在巨大的數據聚集隱患。
五是,各地發展同質化嚴重,普遍存在重存儲輕應用的現象。由於缺乏統一的大數據產業分類統計體系和產業運行監測手段,各地大數據產業的定位相似,同質化競爭加劇。而盲目的重復建設,更是可能導致大數據產業過剩。同時,由於部分地區信息化發展程度有限,大數據應用場景不夠豐富,更是以數據中心等大數據存儲設施的建設作為發展大數據產業的關鍵,且規模巨大,目標動輒以百萬台計,後期若無法有效利用,將造成巨大的資源浪費。

㈥ 人人都在說大數據,那大數據概念是怎麼產生的

概念產生:

「大數據」的名稱來自於未來學家托夫勒所著的《第三次浪潮》 盡管「大數據」這個詞直到最近才受到人們的高度關注,但早在1980年,著名未來學家托夫勒在其所著的《第三次浪潮》中就熱情地將「大數據」稱頌為「第三次浪潮的華彩樂章」。《自然》雜志在2008年9月推出了名為「大數據」的封面專欄。從2009年開始「大數據」才成為互聯網技術行業中的熱門詞彙。

㈦ 大數據是什麼意思 大數據包括什麼

大數據,在近幾年越來越受到人們的關注,盡管大數據概念已經在各個行業中應用逐漸變得廣泛起來,但是對於大多數的人來說,大數據概念在他們眼裡還是模糊不清的,那麼,什麼叫大數據?大數據是什麼意思呢?我查詢整理了相關資料,希望能夠幫助到大家!

大數據的定義

由於計量、記錄、預測生產生活過程的需要,人類對數據探尋的腳步從未停歇,從原始數據的出現,到科學數據的形成,再到大數據的誕生,走過了漫漫長路。

2011年5月,麥肯錫研究院發布報告——Big data: The nextfrontier for innovation, competition, and proctivity,第一次給大數據做出相對清晰的定義:「大數據是指其大小超出了常規資料庫工具獲取、儲存、管理和分析能力的數據集。」

2015年8月31日,國務院《促進大數據發展行動綱要》指出:「大數據是以容量大、類型多、存取速度快、應用價值高為主要特徵的數據集合,正快速發展為對數量巨大、來源分散、格式多樣的數據進行採集、存儲和關聯分析,從中發現新知識、創造新價值、提升新能力的新一代信息技術和服務業態。」

《大數據白皮書2016》稱:「大數據是新資源、新技術和新理念的混合體。從資源視角看,大數據是新資源,體現了一種全新的資源觀;從技術視角看,大數據代表了新一代數據管理與分析技術;從理念的視角看,大數據打開了一種全新的思維角度。」

當前,業界公認的大數據有「4V特徵,即:Volume(體量大)、Variety(種類多)、Velocity(速度快)和Value(價值高)。

大數據的作用在於在龐大的全量數據的基礎上,通過演算法模型,得出有意義的結果,進而進行資源配置的優化、現象的發現、未來的預測等。

大數據的內容

大數據涉及由不同設備和應用程序產生的數據,主要包括以下幾個領域:

1、黑匣子數據:它是直升機,飛機和噴氣機等的組件。它捕捉飛行機組的聲音,麥克風和耳機的錄音,以及飛機的性能信息。

2、社會媒體數據:Facebook和Twitter等社交媒體保存著全球數百萬人發布的信息和觀點。

3、證券交易所數據:證券交易所數據保存關於由客戶在不同公司的份額上做出的「買入」和「賣出」決定的信息。

4、電網數據:電網數據保持特定節點相對於基站消耗的信息。

5、運輸數據:運輸數據包括車輛的型號,容量,距離和可用性。

6、搜索引擎數據:搜索引擎從不同的資料庫檢索大量數據。

因此,大數據包含的數據是大量、高速度和可擴展的數據,其中,數據有三種類型:

(1)結構化數據:關系數據。

(2)半結構化數據:XML數據。

(3)非結構化數據:Word,PDF,文本,媒體日誌

閱讀全文

與國務院大數據是怎麼形成的相關的資料

熱點內容
如何進行定位和目標市場選擇 瀏覽:657
銀行來款信息是怎麼回事 瀏覽:268
期貨交易的書是什麼書 瀏覽:331
金士頓總代理是哪裡 瀏覽:934
奶茶實體店技術培訓哪裡有 瀏覽:598
招團長美團事業部產品方向指什麼 瀏覽:210
網卡技術是什麼意思 瀏覽:42
強迫交易罪從犯拿了25萬判多少年 瀏覽:998
廣州代理公司需要什麼資質 瀏覽:850
108佛珠產品賣點可以有哪些 瀏覽:14
委託代理怎麼收案 瀏覽:623
市場調研應該搞清楚哪些內容 瀏覽:169
微信小商店的產品怎麼下架 瀏覽:558
微商代理費用怎麼收費 瀏覽:32
張庄二手汽車交易市場在哪裡 瀏覽:59
天貓交易平台怎麼取消舉報 瀏覽:32
產品集中化策略有哪些 瀏覽:448
加盟代理商如何開店 瀏覽:613
農產品直供配送有哪些 瀏覽:55
數據線可以接多少個燈珠 瀏覽:524