❶ 大數據開發工程師要掌握哪些技術
1. Java編程技術
Java編程技術是大數據學習的基礎,Java是一種強類型語言,擁有極高的跨平台能力,可以編寫桌面應用程序、Web應用程序、分布式系統和嵌入式系統應用程序等,是大數據工程師最喜歡的編程工具,因此,想學好大數據,掌握Java基礎是必不可少的。
2.Linux命令
對於大數據開發通常是在Linux環境下進行的,相比Linux操作系統,Windows操作系統是封閉的操作系統,開源的大數據軟體很受限制,因此,想從事大數據開發相關工作,還需掌握Linux基礎操作命令。
3. Hadoop
Hadoop是大數據開發的重要框架,其核心是HDFS和MapRece,HDFS為海量的數據提供了存儲,MapRece為海量的數據提供了計算,因此,需要重點掌握,除此之外,還需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高級管理等相關技術與操作!
4. Hive
Hive是基於Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張資料庫表,並提供簡單的sql查詢功能,可以將sql語句轉換為MapRece任務進行運行,十分適合數據倉庫的統計分析。對於Hive需掌握其安裝、應用及高級操作等。
5. Avro與Protobuf
Avro與Protobuf均是數據序列化系統,可以提供豐富的數據結構類型,十分適合做數據存儲,還可進行不同語言之間相互通信的數據交換格式,學習大數據,需掌握其具體用法。
6.ZooKeeper
ZooKeeper是Hadoop和Hbase的重要組件,是一個為分布式應用提供一致性服務的軟體,提供的功能包括:配置維護、域名服務、分布式同步、組件服務等,在大數據開發中要掌握ZooKeeper的常用命令及功能的實現方法。
關於大數據開發工程師要掌握哪些技術,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❷ 資料庫開發工程師的技能要求有哪些
精通一種常用編程語言(C/C++、JAVA、PHP等),了解主流的框架、庫使用和原理。
深入了解計算機數據結構和演算法設計,具備Linux操作系統基礎知識。
掌握基本的網路編程知識,熟悉多線程編程及其技巧。
熟練掌握Linux、web server、資料庫、緩存相關技術的使用,了解內部實現機制為最優。
掌握資料庫基本原理和知識,熟悉SQL語法規則和特點。
❸ 想成為一名大數據工程師,需要具備哪些技能
1、 掌握至少一種資料庫開發技術:Oracle、Teradata、DB2、Mysql等,靈活運用SQL實現海量數據ETL加工處理。
2、 熟悉Linux系統常規shell處理命令,靈活運用shell做的文本處理和系統操作。
3、 有從事分布式數據存儲與計算平台應用開發經驗,熟悉Hadoop生態相關技術並有相關實踐經驗著優先,重點考察Hdfs、Maprece、Hive、Hbase。
4、 熟練掌握一門或多門編程語言,並有大型項目建設經驗者優先,重點考察Java、Python、Perl。
5、 熟悉數據倉庫領域知識和技能者優先,包括但不局限於:元數據管理、數據開發測試工具與方法、數據質量、主數據管理。
6、 掌握實時流計算技術,有storm開發經驗者優先。
關於想成為一名大數據工程師需要具備哪些技能的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❹ 資料庫開發工程師的技能要求
1)精通一種常用編程語言(C/C++、JAVA、PHP等),了解主流的框架、庫使用和原理
2)深入了解計算機數據結構和演算法設計,具備Linux操作系統基礎知識
3)掌握基本的網路編程知識,熟悉多線程編程及其技巧
4)熟練掌握Linux、web server、資料庫、緩存相關技術的使用,了解內部實現機制為最優
5)掌握資料庫基本原理和知識,熟悉SQL語法規則和特點
6)有開源資料庫(MySQL、PostgreSQL等)研究和開發經驗 1)熟練掌握分布式系統理論並有著大量實踐
2)開源社區成員,為開源軟體提交過patch
3)精通Linux系統IO、鎖等調優技術 1)有良好的英語閱讀能力,能夠閱讀英文資料
2)自我驅動,主動的學習能力和較強的動手能力
3)工作認真細致,有責任心,勤奮踏實,善於思考問題
4)有時間觀念,獨立性強,溝通能力好,具有團隊合作精神
❺ 大數據工程師需要學哪些技術
一、大數據採集
大數據採集,即對各種來源的結構化和非結構化海量數據,所進行的採集。
資料庫採集:流行的有Sqoop和ETL,傳統的關系型資料庫MySQL和Oracle 也依然充當著許多企業的數據存儲方式。當然了,目前對於開源的Kettle和Talend本身,也集成了大數據集成內容,可實現hdfs,hbase和主流Nosq資料庫之間的數據同步和集成。
網路數據採集:一種藉助網路爬蟲或網站公開API,從網頁獲取非結構化或半結構化數據,並將其統一結構化為本地數據的數據採集方式。
文件採集:包括實時文件採集和處理技術flume、基於ELK的日誌採集和增量採集等等。
二、大數據預處理
大數據預處理,指的是在進行數據分析之前,先對採集到的原始數據所進行的諸如“清洗、填補、平滑、合並、規格化、一致性檢驗”等一系列操作,旨在提高數據質量,為後期分析工作奠定基礎。數據預處理主要包括四個部分:數據清理、數據集成、數據轉換、數據規約。
三、大數據儲存
大數據每年都在激增龐大的信息量,加上已有的歷史數據信息,對整個業界的數據存儲、處理帶來了很大的機遇與挑戰.為了滿足快速增長的存儲需求,雲存儲需要具備高擴展性、高可靠性、高可用性、低成本、自動容錯和去中心化等特點.常見的雲存儲形式可以分為分布式文件系統和分布式資料庫。其中,分布式文件系統採用大規模的分布式存儲節點來滿足存儲大量文件的需求,而分布式的NoSQL資料庫則為大規模非結構化數據的處理和分析提供支持。
四、大數據清洗
MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算,”Map(映射)”和”Rece(歸約)”,是它的主要思想。它極大的方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統中。隨著業務數據量的增多,需要進行訓練和清洗的數據會變得越來越復雜,這個時候就需要任務調度系統,比如oozie或者azkaban,對關鍵任務進行調度和監控。
關於大數據工程師需要學哪些技術,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。