❶ 關於大數據的來源 以下理解正確的是哪些
數據(big data)指定間范圍內用規軟體工具進行捕捉、管理處理數據集合需要新處理模式才能具更強決策力、洞察發現力流程優化能力海量、高增率化信息資產
維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫《數據代》 數據指用隨機析(抽調查)捷徑採用所數據進行析處理數據5V特點(IBM提):Volume(量)、Velocity(高速)、Variety()、Value(低價值密度)、Veracity(真實性)
❷ 關於大數據的特徵理解正確
這個你的看誰去理解了,外行人去理解大數據的話,肯定是以為大數據就是很多很大的數據,內行人去理解的話可能就是很多很多的工具和代碼了。這就是內行和外行的區別了。不過沒有對錯,都是有道理的解釋。大數據培訓檸檬學院。
❸ 關於大數據的內涵,以下理解正確的是.標記 a.大數據還是一種思維方
大數據的計算需要軟體工具,包括各種匯集和智能演算法和各種框架如MapRece,和硬體包括各種集群設備,以及中間件如各種虛擬系統
❹ 大數據的三重內涵
大數據的三重內涵
大數據在業內並沒有統一的定義。不同廠商、不同用戶,站的角度不同,對大數據的理解也不一樣。麥肯錫報告中對大數據的基本定義是:大數據是指其大小超出了典型資料庫軟體的採集、儲存、管理和分析等能力的數據集合。賽迪智庫指出,大數據是一個相對的概念,並沒有一個嚴格的標准限定多大規模的數據集合才稱得上是大數據。事實上,隨著時間推移和數據管理與處理技術的進步,符合大數據標準的數據集合的規模也在並將繼續增長。同時,對於不同行業領域和不同應用而言,「大數據」的規模也不統一。
雖然「大數據」直接代表的是數據集合這一靜態對象,但賽迪智庫經過深入研究認為,目前所提到的「大數據」,並不僅僅是大規模數據集合本身,而應當是數據對象、技術與應用三者的統一:
1.從對象角度看,大數據是大小超出典型資料庫軟體採集、儲存、管理和分析等能力的數據集合。需要注意的是,大數據並非大量數據簡單、無意義的堆積,數據量大並不意味著一定具有可觀的利用前景。由於最終目標是從大數據中獲取更多有價值的「新」信息,所以必然要求這些大量的數據之間存在著或遠或近、或直接或間接的關聯性,才具有相當的分析挖掘價值。數據間是否具有結構性和關聯性,是 「大數據」與「大規模數據」的重要差別。
2.從技術角度看,大數據技術是從各種各樣類型的大數據中,快速獲得有價值信息的技術及其集成。「大數據」與「大規模數據」、「海量數據」等類似概念間的最大區別,就在於「大數據」這一概念中包含著對數據對象的處理行為。為了能夠完成這一行為,從大數據對象中快速挖掘更多有價值的信息,使大數據「活起來」,就需要綜合運用靈活的、多學科的方法,包括數據聚類、數據挖掘、分布式處理等,而這就需要擁有對各類技術、各類軟硬體的集成應用能力。可見,大數據技術是使大數據中所蘊含的價值得以發掘和展現的重要工具。
3.從應用角度看,大數據是對特定的大數據集合、集成應用大數據技術、獲得有價值信息的行為。正由於與具體應用緊密聯系,甚至是一對一的聯系,才使得「應用」成為大數據不可或缺的內涵之一。
需要明確的是,大數據分析處理的最終目標,是從復雜的數據集合中發現新的關聯規則,繼而進行深度挖掘,得到有效用的新信息。如果數據量不小,但數據結構簡單,重復性高,分析處理需求也僅僅是根據已有規則進行數據分組歸類,未與具體業務緊密結合,依靠已有基本數據分析處理技術已足夠,則不能算作是完全的「大數據」,只是「大數據」的初級發展階段。
❺ 對大數據的理解,哪些是正確的
在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB ,1PB=1024GB才足以稱為大數據。
其次,大數據具有什麼樣的特點和結構呢?
大數據從整體上看分為四個特點,
第一,大量。
衡量單位PB級別,存儲內容多。
第二,高速。
大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第二,多樣。
數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第三,價值。
大數據不僅僅擁有本身的信息價值,還擁有商業價值。大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。
那我們身邊有哪些東西是大數據呢?
在生產生活中常見的有電信數據:通話數據、簡訊數據、手機瀏覽數據。銀行數據,微信聊天數據等。
最後,大數據能做什麼?
人們的生活離不開它,因為他在日常生活中發揮的作用逐漸加強。例如:用戶畫像,幫助人們制定個性化的需求,知識圖譜。人工智慧例如:谷歌的「阿爾法狗」在圍棋大賽中贏得、阿里巴巴的ET、網路的無人駕駛汽車等。數字貨幣,物聯網等。
❻ 大數據的內容和基本含義
「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,什麼是大數據概念呢,大數據概念怎麼理解呢,一起來看看吧。
1、大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
2、大數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。
3、大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
4、大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
5、大數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對,挖掘主效基因。例子還有很多。
6、大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
❼ 關於大數據的特徵以下理解正確的是什麼
大數據技術(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
特點:
1.數據量大;
2.數據類型多;
3.數據處理實時性強;
4.數據真實性。
意義:大數據的意義在於通過對大量數據進行分析從而對核心價值進行預測。
缺陷:對處理能力要求高,存在隱私安全問題。
❽ 什麼是「大數據」的真正含義
如果你說大數據就是數據大,或者侃侃而談4個V,也許很有深度的談到BI或預測的價值,又或者拿Google和Amazon舉例,技術流可能會聊起Hadoop和Cloud Computing,不管對錯,只是無法勾勒對大數據的整體認識,不說是片面,但至少有些管窺蠡測、隔衣瘙癢了。也許,「解構」是最好的方法。
怎樣結構大數據?
首先,大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我們著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;從對大數據的現在和未來去洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
和大數據相關的理論?
1、 特徵定義
最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
業界(IBM 最早定義)將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:第一,數據體量巨大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T);第二,數據類型繁多。比如,網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低,商業價值高。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
古語雲:三分技術,七分數據,得數據者得天下。先不論誰說的,但是這句話的正確性已經不用去論證了。維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數據思維去發掘大數據的潛在價值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價格打折數據,來預測用戶購買機票的時機是否合適。
那麼,什麼是大數據思維?維克托·邁爾-舍恩伯格認為,1-需要全部數據樣本而不是抽樣;2-關注效率而不是精確度;3-關注相關性而不是因果關系。
阿里巴巴的王堅對於大數據也有一些獨特的見解,比如,
「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」
「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」
「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」
特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白