㈠ 如何用excel做線性回歸分析
1、單擊開始---->所有程序---->Microsoft Office,選擇Microsoft Excel 2010選項。
㈡ 回歸分析的基本步驟是什麼
回歸分析:
1、確定變數:明確預測的具體目標,也就確定了因變數。如預測具體目標是下一年度的銷售量,那麼銷售量Y就是因變數。通過市場調查和查閱資料,尋找與預測目標的相關影響因素,即自變數,並從中選出主要的影響因素。
2、建立預測模型:依據自變數和因變數的歷史統計資料進行計算,在此基礎上建立回歸分析方程,即回歸分析預測模型。
3、進行相關分析:回歸分析是對具有因果關系的影響因素(自變數)和預測對象(因變數)所進行的數理統計分析處理。只有當自變數與因變數確實存在某種關系時,建立的回歸方程才有意義。
因此,作為自變數的因素與作為因變數的預測對象是否有關,相關程度如何,以及判斷這種相關程度的把握性多大,就成為進行回歸分析必須要解決的問題。進行相關分析,一般要求出相關關系,以相關系數的大小來判斷自變數和因變數的相關的程度。
4、計算預測誤差:回歸預測模型是否可用於實際預測,取決於對回歸預測模型的檢驗和對預測誤差的計算。回歸方程只有通過各種檢驗,且預測誤差較小,才能將回歸方程作為預測模型進行預測。
5、確定預測值:利用回歸預測模型計算預測值,並對預測值進行綜合分析,確定最後的預測值。
Logistic Regression邏輯回歸
邏輯回歸是用來計算「事件=Success」和「事件=Failure」的概率。當因變數的類型屬於二元(1 / 0,真/假,是/否)變數時,應該使用邏輯回歸。這里,Y的值為0或1,它可以用下方程表示。
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk
在這里使用的是的二項分布(因變數),需要選擇一個對於這個分布最佳的連結函數。它就是Logit函數。在上述方程中,通過觀測樣本的極大似然估計值來選擇參數,而不是最小化平方和誤差(如在普通回歸使用的)。
以上內容參考:網路-回歸分析
㈢ 數據分析師必須掌握的7種回歸分析方法
1、線性回歸
線性回歸是數據分析法中最為人熟知的建模技術之一。它一般是人們在學習預測模型時首選的技術之一。在這種數據分析法中,由於變數是連續的,因此自變數可以是連續的也可以是離散的,回歸線的性質是線性的。
線性回歸使用最佳的擬合直線(也就是回歸線)在因變數(Y)和一個或多個自變數(X)之間建立一種關系。
2、邏輯回歸
邏輯回歸是用來計算“事件=Success”和“事件=Failure”的概率。當因變數的類型屬於二元(1 /0,真/假,是/否)變數時,我們就應該使用邏輯回歸.
邏輯回歸不要求自變數和因變數是線性關系。它可以處理各種類型的關系,因為它對預測的相對風險指數OR使用了一個非線性的log轉換。
為了避免過擬合和欠擬合,我們應該包括所有重要的變數。有一個很好的方法來確保這種情況,就是使用逐步篩選方法來估計邏輯回歸。它需要大的樣本量,因為在樣本數量較少的情況下,極大似然估計的效果比普通的最小二乘法差。
3、多項式回歸
對於一個回歸方程,如果自變數的指數大於1,那麼它就是多項式回歸方程。雖然會有一個誘導可以擬合一個高次多項式並得到較低的錯誤,但這可能會導致過擬合。你需要經常畫出關系圖來查看擬合情況,並且專注於保證擬合合理,既沒有過擬合又沒有欠擬合。下面是一個圖例,可以幫助理解:
明顯地向兩端尋找曲線點,看看這些形狀和趨勢是否有意義。更高次的多項式最後可能產生怪異的推斷結果。
4、逐步回歸
在處理多個自變數時,我們可以使用這種形式的回歸。在這種技術中,自變數的選擇是在一個自動的過程中完成的,其中包括非人為操作。
這一壯舉是通過觀察統計的值,如R-square,t-stats和AIC指標,來識別重要的變數。逐步回歸通過同時添加/刪除基於指定標準的協變數來擬合模型。
5、嶺回歸
嶺回歸分析是一種用於存在多重共線性(自變數高度相關)數據的技術。在多重共線性情況下,盡管最小二乘法(OLS)對每個變數很公平,但它們的差異很大,使得觀測值偏移並遠離真實值。嶺回歸通過給回歸估計上增加一個偏差度,來降低標准誤差。
除常數項以外,這種回歸的假設與最小二乘回歸類似;它收縮了相關系數的值,但沒有達到零,這表明它沒有特徵選擇功能,這是一個正則化方法,並且使用的是L2正則化。
6、套索回歸
它類似於嶺回歸。除常數項以外,這種回歸的假設與最小二乘回歸類似;它收縮系數接近零(等於零),確實有助於特徵選擇;這是一個正則化方法,使用的是L1正則化;如果預測的一組變數是高度相關的,Lasso 會選出其中一個變數並且將其它的收縮為零。
7、回歸
ElasticNet是Lasso和Ridge回歸技術的混合體。它使用L1來訓練並且L2優先作為正則化矩陣。當有多個相關的特徵時,ElasticNet是很有用的。Lasso會隨機挑選他們其中的一個,而ElasticNet則會選擇兩個。Lasso和Ridge之間的實際的優點是,它允許ElasticNet繼承循環狀態下Ridge的一些穩定性。
通常在高度相關變數的情況下,它會產生群體效應;選擇變數的數目沒有限制;並且可以承受雙重收縮。
關於數據分析師必須掌握的7種回歸分析方法,青藤小編就和您分享到這里了,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的職業前景及就業內容,可以點擊本站的其他文章進行學習。
㈣ 如何對數據進行回歸分析
CRM無疑是企業有效的銷售工具,為企業做出准確的客戶數據分析,提升數據分析的水平,幫助企業提升銷售業績。
1、統計報表直觀可見
CRM系統可以按團隊或者按人員查看銷售數據,包含了員工線索數據分析、員工客戶分析、員工商機分析、銷售漏斗分析、商機趨勢分析等。
銷售數據直觀可見,管理簡便,管理者即可清楚的看到員工的正常任務是如期完成還是超期完成,對於員工的工作績效考核有重要分析意義。
2、客戶需求整體把握
CRM系統通過把為外部數據,如社交媒體數據,購買歷史,產品趨勢和最新發布等,與內部數據結合起來以提升洞察力。
在某些情況下,數據能夠揭示顧客的需求,通過數據分析能為企業更好地了解客戶行為,分析客戶喜好,並有針對性地提供更優秀的產品及服務。
3、銷售預測更加精準
CRM系統可將銷售機會以漏斗形式展示,直觀的看到不同階段所存在的機會數量與預計簽約金額,通過多層級細致分析,實現大數據精準預測未來時間段企業產生的銷售業績。
分階段的銷售過程推進,可以預測出成交的時間和節點,以及所記錄的精準需求,由此可以判斷出客戶成交的價值高低以及可能性。
此外,CRM系統數據分析功能還可以從多個維度、多個方面對企業數據進行分析,讓管理人員可以從數據分析的結果得出企業的經營狀況以及主要客戶的特徵,進而對企業下一步的規劃作出調整。
簡信crm
面對紛繁復雜的大量數據,CRM系統嵌入BI功能,能夠對海量的數據進行分析處理,甄選出有用的數據,幫助銷售人員明了客戶需求,為銷售帶來了福音。
㈤ 如何用EXCEL做數據線性擬合和回歸分析
1、釐清各個數據之間的邏輯關系,搞清楚哪個是自變數,哪個又是因變數。這里我們要對人均gdp和城市化水平進行分析,建立符合兩者之間的模型,假定人均gdp為自變數,城市化水平是因變數。
2、由於我們不知道兩者之間的具體關系如何,所以我們利用數據生成一個散點圖判斷其可能符合的模型。為生成的散點圖,一般橫坐標為自變數,縱坐標為因變數,所以我們需要將x軸,y軸的坐標對調一下,這里採用最簡單的方法,將因變數移動到自變數的右邊一列即可。
3、由步驟2的散點圖,我們可以判斷自變數和因變數之間可能呈線性關系,我們可以添加線性趨勢線進一步加以判斷。如附圖1所示。也可以添加指數,移動平均等趨勢線進行判斷。很明顯數據可能符合線性關系,所以下面我們對數據進行回歸分析。
4、選擇菜單欄的「數據分析」-->「回歸」。
5、步驟4進行的回歸分析輸出結果如附圖所示。回歸模型是否有效,可以參見p指,如果p<0.001則極端顯著,如果0.001<p<0.01非常顯著,0.01<p<0.05則一般顯著,p>0.05則不顯著。本例的p值均小於0.001,所以屬於極端顯著,故回歸模型是有效的。根據回歸模型的結果可知
y = 5E-06x + 0.5876R² = 0.9439
㈥ 回歸分析結果怎麼分析
從一組數據出發,確定某些變數之間的定量關系式,即建立數學模型並估計其中的未知參數。估計參數的常用方法是最小二乘法。對這些關系式的可信程度進行檢驗。
在許多自變數共同影響著一個因變數的關系中,判斷哪個(或哪些)自變數的影響是顯著的,哪些自變數的影響是不顯著的,將影響顯著的自變數加入模型中,而剔除影響不顯著的變數,通常用逐步回歸、向前回歸和向後回歸等方法。
利用所求的關系式對某一生產過程進行預測或控制。回歸分析的應用是非常廣泛的,統計軟體包使各種回歸方法計算十分方便。
(6)如何用數據分析回歸進行分析擴展閱讀
回歸分析法進行預測首先要對各個自變數做出預測。若各個自變數可以由人工控制或易於預測,而且回歸方程也較為符合實際,則應用回歸預測是有效的,否則就很難應用。
為使回歸方程較能符合實際,首先應盡可能定性判斷自變數的可能種類和個數,並在觀察事物發展規律的基礎上定性判斷回歸方程的可能類型;其次,力求掌握較充分的高質量統計數據,再運用統計方法,利用數學工具和相關軟體從定量方面計算或改進定性判斷。