A. 數據結構演算法有哪些
數據結構是一門研究非數值計算的程序設計問題中的操作對象,以及它們之間的關系和操作等相關問題的學科。
可以理解為:程序設計 = 數據結構 + 演算法
數據結構演算法具有五個基本特徵:輸入、輸出、有窮性、確定性和可行性。
1、輸入:一個演算法具有零個或者多個輸出。以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件。後面一句話翻譯過來就是,如果一個演算法本身給出了初始條件,那麼可以沒有輸出。比如,列印一句話:NSLog(@"你最牛逼!");
2、輸出:演算法至少有一個輸出。也就是說,演算法一定要有輸出。輸出的形式可以是列印,也可以使返回一個值或者多個值等。也可以是顯示某些提示。
3、有窮性:演算法的執行步驟是有限的,演算法的執行時間也是有限的。
4、確定性:演算法的每個步驟都有確定的含義,不會出現二義性。
5、可行性:演算法是可用的,也就是能夠解決當前問題。
數據結果的基本演算法有:
1、圖搜索(廣度優先、深度優先)深度優先特別重要
2、排序
3、動態規劃
4、匹配演算法和網路流演算法
5、正則表達式和字元串匹配
6、三路劃分-快速排序
7、合並排序(更具擴展性,復雜度類似快速排序)
8、DF/BF 搜索 (要知道使用場景)
9、Prim / Kruskal (最小生成樹)
10、Dijkstra (最短路徑演算法)
11、選擇演算法
B. 數據結構中,樹的度是什麼
一棵樹中,最大的節點的度稱為樹的度。
樹由根結點和若干顆子樹構成的。樹是由一個集合以及在該集合上定義的一種關系構成的。集合中的元素稱為樹的結點,所定義的關系稱為父子關系。父子關系在樹的結點之間建立了一個層次結構。在這種層次結構中有一個結點具有特殊的地位,這個結點稱為該樹的根結點,或稱為樹根。
單個結點是一棵樹,樹根就是該結點本身。
設T1,T2,..,Tk是樹,它們的根結點分別為n1,n2,..,nk。用一個新結點n作為n1,n2,..,nk的父親,則得到一棵新樹,結點n就是新樹的根。我們稱n1,n2,..,nk為一組兄弟結點,它們都是結點n的子結點。我們還稱T1,T2,..,Tk為結點n的子樹。
空集合也是樹,稱為空樹。空樹中沒有結點。
(2)數據結構度有哪些擴展閱讀:
相關術語
節點的度:一個節點含有的子樹的個數稱為該節點的度;
葉節點或終端節點:度為0的節點稱為葉節點;
非終端節點或分支節點:度不為0的節點;
雙親節點或父節點:若一個節點含有子節點,則這個節點稱為其子節點的父節點;
孩子節點或子節點:一個節點含有的子樹的根節點稱為該節點的子節點;
兄弟節點:具有相同父節點的節點互稱為兄弟節點;
節點的層次:從根開始定義起,根為第1層,根的子節點為第2層,以此類推;
樹的高度或深度:樹中節點的最大層次;
堂兄弟節點:雙親在同一層的節點互為堂兄弟;
節點的祖先:從根到該節點所經分支上的所有節點;
子孫:以某節點為根的子樹中任一節點都稱為該節點的子孫。
森林:由m(m>=0)棵互不相交的樹的集合稱為森林。
參考資料來源:網路-樹
(數據結構名詞)