導航:首頁 > 數據處理 > 大數據推薦單一是什麼現象

大數據推薦單一是什麼現象

發布時間:2022-11-30 07:16:39

大數據現象是怎麼形成的

❷ 什麼是「大數據」殺熟為什麼會出現這種現象

隨著社會的發展,我們的科技變得越來越好,很多人都會利用科技來改善我們的生活,但是有的時候科技也有可能損害我們的生活,比如說大數據殺熟的現象,什麼是大數據殺熟呢?為什麼會出現這種現象呢?其實我認為主要是因為人們都在追求利潤,接下來跟大傢具體說明。3.很多人為了利潤,所以會出現這種現象。
對於公司來說,他們的主要目的是利潤,他們雖然知道客戶花多了錢,但是對於他們來說,通過這樣的方式能夠讓自己賺取更多的利潤,從而表現不錯,獲得更多人的投資,改善自己的生活,所以歸根結底還是利潤,但是我們在賺取利潤的時候也應該考慮到消費者的利益,更應該注意對於企業的影響,所以這種行為應該被制止。


總而言之,科技的發展是雙刃劍,既有好處也有壞處,就比如大數據用在好的一方面能夠方便我們的生活,為我們省錢,用在壞的一方面能夠讓很多消費者多花錢,坑了消費者,所以說很多公司為了自己的利潤,為了自己的報表好看,會選擇做這種事情,這種行為應該被制止,是不符合商業規則的,應該對消費者負責。

❸ 大數據指的是什麼

大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

(3)大數據推薦單一是什麼現象擴展閱讀

大數據的價值體現在以下幾個方面:

1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷

2、做小而美模式的中小微企業可以利用大數據做服務轉型

3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值

參考資料來源:網路-大數據

❹ 大數據現象是怎麼形成的

大數據是無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。


(4)大數據推薦單一是什麼現象擴展閱讀

大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。

大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。

❺ 詳細解讀你所不了解的「大數據」

詳細解讀你所不了解的「大數據」
進入2012年,大數據(bigdata)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。它已經上過《》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的證券公司等寫進了投資推薦報告。
一、大數據出現的背景
進入2012年,大數據(bigdata)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。它已經上過《》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的證券公司等寫進了投資推薦報告。
數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然現在企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。
最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
大數據在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量,大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。

二、什麼是大數據?
信息技術領域原先已經有「海量數據」、「大規模數據」等概念,但這些概念只著眼於數據規模本身,未能充分反映數據爆發背景下的數據處理與應用需求,而「大數據」這一新概念不僅指規模龐大的數據對象,也包含對這些數據對象的處理和應用活動,是數據對象、技術與應用三者的統一。
1、大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據對象既可能是實際的、有限的數據集合,如某個政府部門或企業掌握的資料庫,也可能是虛擬的、無限的數據集合,如微博、微信、社交網路上的全部信息。
大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,「大數據」指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。
亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。研發小組對大數據的定義:「大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。」Kelly說:「大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。
2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
3、大數據應用,是指對特定的大數據集合,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務需求、數據集合和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才能充分實現大數據的價值。
當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。

三、大數據的類型和價值挖掘方法
1、大數據的類型大致可分為三類:
1)傳統企業數據(Traditionalenterprisedata):包括 CRMsystems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。
2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetailRecords),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。
3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。
2、大數據挖掘商業價值的方法主要分為四種:
1)客戶群體細分,然後為每個群體量定製特別的服務。
2)模擬現實環境,發掘新的需求同時提高投資的回報率。
3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。
4)降低服務成本,發現隱藏線索進行產品和服務的創新。
四、大數據的特點
業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:
1、是數據體量巨大
數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;網路資料表明,其新首頁導航每天需要提供的數據超過1.5PB(1PB=1024TB),這些數據如果列印出來將超過5千億張A4紙。有資料證實,到目前為止,人類生產的所有印刷材料的數據量僅為200PB。
2、是數據類別大和類型多樣
數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。
3、是處理速度快
在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
4、是價值真實性高和密度低
數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。以視頻為例,一小時的視頻,在不間斷的監控過程中,可能有用的數據僅僅只有一兩秒。

五、大數據的作用
1、對大數據的處理分析正成為新一代信息技術融合應用的結點
移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。
大數據具有催生社會變革的能量。但釋放這種能量,需要嚴謹的數據治理、富有洞見的數據分析和激發管理創新的環境(RamayyaKrishnan,卡內基·梅隆大學海因茲學院院長)。
2、大數據是信息產業持續高速增長的新引擎
面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。
3、大數據利用將成為提高核心競爭力的關鍵因素
各 行各業的決策正在從「業務驅動」轉變「數據驅動」。對大數據的分析可以使零售商實時掌握市場動態並迅速做出應對;可以為商家制定更加精準有效的營銷策略提供決策支持;可以幫助企業為消費者提供更加及時和個性化的服務;在醫療領域,可提高診斷准確性和葯物有效性;在公共事業領域,大數據也開始發揮促進經濟發展、維護社會穩定等方面的重要作用。
4、大數據時代科學研究的方法手段將發生重大改變
例如,抽樣調查是社會科學的基本研究方法。在大數據時代,可通過實時監測、跟蹤研究對象在互聯網上產生的海量行為數據,進行挖掘分析,揭示出規律性的東西,提出研究結論和對策。

六、大數據的商業價值
1、對顧客群體細分
「大數據」可以對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。雲存儲的海量數據和「大數據」的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。
2、模擬實境
運用「大數據」模擬實境,發掘新的需求和提高投入的回報率。現在越來越多的產品中都裝有感測器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網路也在產生著海量的數據。
雲計算和「大數據」分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以數據化。「大數據」技術可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變數(比如不同地區不同促銷方案)的情況下何種方案投入回報最高。
3、提高投入回報率
提高「大數據」成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。「大數據」能力強的部門可以通過雲計算、互聯網和內部搜索引擎把」大數據」成果和「大數據」能力比較薄弱的部門分享,幫助他們利用「大數據」創造商業價值。
4、數據存儲空間出租
企業和個人有著海量信息存儲的需求,只有將數據妥善存儲,才有可能進一步挖掘其潛在價值。具體而言,這塊業務模式又可以細分為針對個人文件存儲和針對企業用戶兩大類。主要是通過易於使用的API,用戶可以方便地將各種數據對象放在雲端,然後再像使用水、電一樣按用量收費。目前已有多個公司推出相應服務,如亞馬遜、網易、諾基亞等。運營商也推出了相應的服務,如中國移動的彩雲業務。
5、管理客戶關系
客戶管理應用的目的是根據客戶的屬性(包括自然屬性和行為屬性),從不同角度深層次分析客戶、了解客戶,以此增加新的客戶、提高客戶的忠誠度、降低客戶流失率、提高客戶消費等。對中小客戶來說,專門的CRM顯然大而貴。不少中小商家將飛信作為初級CRM來使用。比如把老客戶加到飛信群里,在群朋友圈裡發布新產品預告、特價銷售通知,完成售前售後服務等。
6、個性化精準推薦
在運營商內部,根據用戶喜好推薦各類業務或應用是常見的,比如應用商店軟體推薦、IPTV視頻節目推薦等,而通過關聯演算法、文本摘要抽取、情感分析等智能分析演算法後,可以將之延伸到商用化服務,利用數據挖掘技術幫助客戶進行精準營銷,今後盈利可以來自於客戶增值部分的分成。
以日常的「垃圾簡訊」為例,信息並不都是「垃圾」,因為收到的人並不需要而被視為垃圾。通過用戶行為數據進行分析後,可以給需要的人發送需要的信息,這樣「垃圾簡訊」就成了有價值的信息。在日本的麥當勞,用戶在手機上下載優惠券,再去餐廳用運營商DoCoMo的手機錢包優惠支付。運營商和麥當勞搜集相關消費信息,例如經常買什麼漢堡,去哪個店消費,消費頻次多少,然後精準推送優惠券給用戶。
7、數據搜索
數據搜索是一個並不新鮮的應用,隨著「大數據」時代的到來,實時性、全范圍搜索的需求也就變得越來越強烈。我們需要能搜索各種社交網路、用戶行為等數據。其商業應用價值是將實時的數據處理與分析和廣告聯系起來,即實時廣告業務和應用內移動廣告的社交服務。
運營商掌握的用戶網上行為信息,使得所獲取的數據「具備更全面維度」,更具商業價值。典型應用如中國移動的「盤古搜索」。

七、大數據對經濟社會的重要影響
1、能夠推動實現巨大經濟效益
比如對中國零售業凈利潤增長的貢獻,降低製造業產品開發、組裝成本等。預計2013年全球大數據直接和間接拉動信息技術支出將達1200億美元。
2、能夠推動增強社會管理水平
大數據在公共服務領域的應用,可有效推動相關工作開展,提高相關部門的決策水平、服務效率和社會管理水平,產生巨大社會價值。歐洲多個城市通過分析實時採集的交通流量數據,指導駕車出行者選擇最佳路徑,從而改善城市交通狀況。
3、如果沒有高性能的分析工具,大數據的價值就得不到釋放
對大數據應用必須保持清醒認識,既不能迷信其分析結果,也不能因為其不完全准確而否定其重要作用。
1)由於各種原因,所分析處理的數據對象中不可避免地會包括各種錯誤數據、無用數據,加之作為大數據技術核心的數據分析、人工智慧等技術尚未完全成熟,所以對計算機完成的大數據分析處理的結果,無法要求其完全准確。例如,谷歌通過分析億萬用戶搜索內容能夠比專業機構更快地預測流感暴發,但由於微博上無用信息的干擾,這種預測也曾多次出現不準確的情況。
2)必須清楚定位的是,大數據作用與價值的重點在於能夠引導和啟發大數據應用者的創新思維,輔助決策。簡單而言,若是處理一個問題,通常人能夠想到一種方法,而大數據能夠提供十種參考方法,哪怕其中只有三種可行,也將解決問題的思路拓展了三倍。
所以,客觀認識和發揮大數據的作用,不誇大、不縮小,是准確認知和應用大數據的前提。

八、總結
不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。
1、從大數據的價值鏈條來分析,存在三種模式:
1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。
2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。
3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。
2、未來在大數據領域最具有價值的是兩種事物:
1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;
2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。
大數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於數據的應用需求和應用水平進入新的階段。

❻ 對大數據的全方位解讀

對大數據的全方位解讀
大數據是當下非常火爆的一個詞,人人都在談論大數據。但大數據的定義是什麼?它到底是如何出現的?它有什麼特別之處?它最大的應用領域在哪裡?它的發展方向是什麼?對於以上問題,其實大多數人是弄不清楚的。
1)大數據時代出現的必然性
大數據和雲計算這兩個詞經常被同時提到,很多人誤以為大數據和雲計算是同時誕生的、具有強綁定關系。其實這兩者之間既有關聯性,也有區別。雲計算指的是一種以互聯網方式來提供服務的計算模式,而大數據指的是基於多源異構、跨域關聯的海量數據分析所產生的決策流程、商業模式、科學範式、生活方式和關聯形態上的顛覆性變化的總和。大數據處理會利用到雲計算領域的很多技術,但大數據並非完全依賴於雲計算;反過來,雲計算之上也並非只有大數據這一種應用。
雲計算的起源可以追溯到 2003 年末 Amazon 公司工程師 Chris Pinkham 提交給 CEO Jeff Bezos 的一篇論文中的一個設想:將 Amazon 內部使用的計算基礎設施開放給全世界的開發者。次年 11 月,Amazon 發布了第一版雲計算服務:Simple Queue Service。Simple Queue Service 再往後發展至 2006 年,演變成立今天著名的 AWS(Amazon Web Sercice)。同在 2006 年,Google 公司 CEO Eric Schmidt 首次公開提出了「雲計算」(Cloud Computing)的這一概念,雲計算也在這一年開始變得廣為人知。
大數據這個詞的流行卻晚了好幾年——直到 2009 年,大數據這個說法才逐漸開始在互聯網圈內傳播。但僅僅在互聯網領域流行,仍然不足以引起普遍關注,因為純互聯網經濟畢竟只佔全球經濟總量的很小一部分。而大數據概念真正變得火爆,卻是因為美國奧巴馬政府在 2012 年高調宣布了其「大數據研究和開發計劃」——美國政府希望利用大數據解決一些政府部門面臨的非常重要的問題,該計劃由橫跨 6 個政府部門的 84 個子課題組成。這標志著大數據真正開始進入主流的傳統線下經濟。
大數據出現的時間點自有它深刻的原因。2009 年至 2012 年這段時間正是電子商務在包括中國在內的全球全面開花的幾年。眾所周知,互聯網領域有 3 大類商業模式:廣告、游戲和電子商務。而電子商務又是第 1個真正將純互聯網經濟與傳統經濟嫁接在一起誕生的混合模式。准確地說,正是互聯網與傳統經濟的碰撞,才真正催生出了今天幾乎全民關注的「大數據」。大數據橫跨了互聯網產業與傳統產業,而且大數據真正廣闊的應用領域其實也正是比純互聯網經濟大得多的傳統產業。
從數據量的角度來看,在電子商務模式出現以前,傳統企業的數量增長緩慢。傳統企業的數據倉庫中的數據大多數來自於交易型數據,而交易這種行為處於用戶消費決策漏斗的最底部,這就決定了交易前的各種瀏覽、搜索、比較等用戶行為數據的都量遠遠超過交易數據。電子商務模式使得企業可以採集到用戶的瀏覽、搜索、比較等行為,這就導致企業的數據規至少提升了一個數量級。現在日益流行的移動互聯網以及將來會流行的物聯網又必將使數據量提高兩三個數量級。從這個角度來講,大數據時代是必然會出現的。
從IT產業的發展來看,第一代IT巨頭大多是 2B 的,比如 IBM、Microsoft、Oracle、SAP 這類傳統IT企業;第二代IT巨頭大多是 2C 的,比如 Yahoo、Google、Amazon、Facebook 這類互聯網企業。一個有意思的現象是:大數據時代前,這兩類公司彼此之間基本是井水不犯河水,我們很少看見這兩類公司的老闆們在一起坐而論道;但在當前這個大數據時代,這兩類公司已經開始直接競爭。比如 Amazon 已經開始提供雲模式的數據倉庫服務,直接搶占 IBM、Oracle 的市場。這個現象出現的本質原因是:在互聯網巨頭的帶動下,傳統IT巨頭的客戶普遍開始從事電子商務業務,正是由於客戶進入了互聯網,所以傳統IT巨頭們不情願地被拖入了互聯網領域。如果他們不進入互聯網,他們業務必將萎縮。所以第三代IT巨頭可能會是 2B 與 2C 融合的IT公司。
2)大數據的核心內涵
大數據概念雖然非常火爆,但少有人真正理解大數據的核心內容。一個普遍而且嚴重的誤解就是:大數據= 數據大,即大數據就是量大的數據。事實上,除了數據量大這個字面意義,大數據還有兩個更重要的特徵:
1) 跨領域數據的交叉融合。相同領域數據量的增加是加法效應,不同領域數據的融合是乘法效應
2) 數據的流動。數據必須流動,流動產生價值
對於第 1) 點,百分點推薦系統研究中心實驗結果顯示:百分點公司有 3 家客戶,分別是從事服裝、化妝品和箱包銷售的電商,百分點向這 3 家客戶提供個性化商品推薦服務,即:百分點挖掘用戶的偏好,不同的用戶上同一家電商網站時,向他們展現不同的服裝、化妝品或箱包,從而提高電商的轉化率和客單價。我們做過兩種測試:
a) 將每家網站的數據隔離。當每家網站自身的數據量增加到以前的 4 倍時,推薦效果大約能提高 5%;
b) 將三家網站的數據在去除敏感信息之後進行某種融合。融合後的數據大致是與單家網站的數據的 3 倍,比第一種情況數據量還少。但利用融合後的數據進行數據挖掘時,推薦效果能提升 30%,而且推薦商品並未發生變化,仍然是:用戶上服飾類網站時只看見服裝、上化妝品網站時只看見化妝品、上箱包網站時只看見箱包。
解釋得詳細一點,上述實驗說明:對同一個消費者,如果我們要向其推薦服裝。第一種方法是我們根據他過去的 4 次購買服裝的行為來預測其下一次可能會購買的服飾;第二種方法是我們根據他過去分別購買服裝、化妝品和箱包的各 1 次行為來預測其下一次可能會購買的服飾。兩種方法的基於的用戶行數分別是 4 次和 3 次,但第二種方法的效果明顯更好。
對於第 2) 點,其實 10 多年前傳統企業開始做數據倉庫時,數據倉庫從業者經常強調一個觀點:企業級數據倉庫的目標是讓不同部門的數據流動起來,各個部門數據割裂,數據的價值就得不到發揮。到了今天的互聯網時代,我們發現即使企業已經打通了內部各個部門之間的數據,但與整個互聯網比起來,數據量仍然微乎其微,數據應該以互聯網為媒介在企業之間某種形式的流動。參照「企業級數據倉庫」的概念,現在已經開始出現了「互聯網數據倉庫」的概念:就是企業通過互聯網渠道將與自己相關的外部數據與內部數據進行整合,從而形成「互聯網數據倉庫」。百分點已經在零售與媒體領域比較成功地打造了「開放數據聯盟」,該聯盟的成員可以在公允、安全的情況下基於該聯盟建立起自己的「互聯網數據倉庫」,從而享用海量數據的價值。
3)大數據的應用領域
大數據的起源要歸功於互聯網與電子商務,但大數據最大的應用前景卻在傳統產業。一是因為幾乎所有傳統產業都在互聯網化,二是因為傳統產業仍然占據了國家 GDP 的絕大部分份額。
哪些傳統企業最需要大數據服務呢?至少有 3 類企業:
1) 對大量消費者提供產品或服務的企業
2) 做小而美模式的中長尾企業
3) 面臨互聯網壓力之下必須轉型的傳統企業
第 1) 類企業都需要利用大數據精準分析不同消費者的偏好,提高營銷和服務的質量;第 1) 類企業都需要利用大數據分析精準定位自己的客戶群;第 3) 類企業主要指哪些正在遭受來自互聯網的新玩家沖擊的傳統企業,此類企業自然都需要利用互聯網和大數據作為自我進化的工具。當然,第 3) 類企業與前 2 類企業有重疊。
具體來講,中國最需要大數據服務的行業就是受互聯網沖擊最大的產業,首先是線下零售業,其次是金融業。
受電商的沖擊,國內很多零售巨頭都增長嚴重放緩,甚至遭遇負增長,線下零售已經到了不得不變革的危機關頭。我們也看到了銀泰百貨、王府井百貨、萬達集團這些具有創新意識的傳統巨頭開始利用互聯網和大數據來改造線下商業。其中銀泰百貨以手機為載體、利用 O2O 方式進行雙線數據挖掘的創新非常值得借鑒。
而金融行業就更加特殊:金融業並不銷售任何實體商品,它自誕生起就是基於數據的產業。由於國家管制,金融業在前幾年享受了非常好的政策紅利,內部變革動力不足。而目前金融業已經逐漸開始放鬆管制,新興的金融機構必將利用互聯網以及大數據工具向傳統金融巨頭發起猛烈攻擊。而傳統金融機構在互聯網方面的技術積累和數據積累都不足,要快速應對新進入者的挑戰,必然需要大數據服務。我們也看到了中信銀行信用卡中心、招商銀行信用卡中心已經在開始利用互聯網大數據進行創新。
那麼傳統產業需要什麼樣的大數據服務呢?這主要包括 3 層:
1) 基於大數據的行業垂直應用。每個行業都有自己的特點,所以自然會存在行業應用的需求;
2) 顧客標簽與商品標簽的整理。不管什麼行業,都需要精細化整理自己顧客的屬性標簽以及商品屬性標簽,而且這些標簽必須能夠細化到單個顧客和單個商品。標簽是行業應用的基礎;
3) 企業內部和外部數據的整合與管理。要給顧客和商品打標簽,首先必須整合企業內部和外部數據,尤其是日益重要和龐大的外部數據。
圖:傳統企業需要的大數據服務
第 3 層和第 2 層的方法相對比較通用,行業特殊性相對較少。百分點已經在第 3 層和第 2 層做出了比較成熟的產品,並且也開始在第 1 層做出了一些具體的行業應用產品,比如針對服飾行業的時尚服飾搭配系統。
4)大數據的發展方向
大數據產業未來會向什麼方向發展?隨著數據逐漸成為企業的一種資產,數據產業會向傳統企業的供應鏈模式發展,最終形成「數據供應鏈」。拿鋼鐵產業來講,鐵礦石公司從礦場中挖出礦石,經過粗加工,賣給鋼鐵企業;鋼鐵企業再進行精細一點的加工,將板材、鋼條賣給下游製造業公司;這些製造業公司做出汽車、飛機、門窗、電腦等產品賣給下游公司。這個產業鏈中存在找礦、運輸、加工等諸多環節,每個環節都有對應的企業。
圖:傳統企業的供應鏈
在「數據供應鏈」中,存在數據、數據整合與挖掘工具以及數據應用這 3 大環節。數據就好比礦場的礦石;數據整合與挖掘工具就好比鋼廠的冶煉爐;而精準營銷、服飾搭配等數據應用就好比汽車、電腦等可以出售給消費者的產品。企業在數據供應、數據整合與挖掘、數據應用等所有環節都需要專業的服務。這里尤其有兩個明顯的現象:
1) 外部數據的重要性日益超過內部數據。在互聯互通的互聯網時代,單一企業的內部數據與整個互聯網數據比較起來只是滄海一粟;
2) 能提供包括數據供應、數據整合與加工、數據應用等多環節服務的公司會有明顯的綜合競爭優勢。
5) 什麼樣的大數據企業會勝出
常有大數據從業者以及投資人和我們探討一個問題:大數據產業中,什麼樣的企業會最終勝出?這是一個很難回答的問題,而且即使回答了,三五年內可能都無法判斷其正確性。但從「數據供應鏈」中的各個環節來分析,還是可以得出一些具有參考價值的結論。
1) 數據供應。在互聯網沒有流行的時代,企業做數據倉庫、商業智能、數據挖掘等系統時採用的數據基本都來自於企業內部,企業幾乎無法獲取外部數據,所以很少有專業的數據供應商。互聯網改變了這一局面,將來會有專業的數據供應商。但既然是因為互聯網的出現導致了數據供應商的出現,那麼反過來數據供應商就必須具有很強的互聯網基因;
2) 數據整合與挖掘。數據挖掘工具供應商在非互聯網時代就早已存在。但互聯網時代使得企業的數據量激增、數據類型發生極大變化(不同於傳統的來自於單一領域的結構化數據,互聯網數據以跨域的非結構化數據為主),傳統的數據挖掘工具供應商的技術和方法已經很難適應。要跟上時代的變化,數據挖掘技術與工具應用商必須具備互聯網公司的海量數據處理和挖掘的能力;
3) 數據應用。具體的行業應用與傳統行業的業務關系密切,要做好行業應用,最好需要有服務傳統行業的經驗,了解傳統行業的內部運作模式。這時候僅僅具有 2C 經驗的互聯網基因的公司又稍顯不足。
綜合起來看,如果一家大數據從業公司同時兼備互聯網數據獲取能力、互聯網技術、互聯網執行力,又有做 2B 服務的經驗,那麼這家公司將比較容易取得領先優勢。這個結論其實一點也不奇怪:如本文開篇所述,大數據本來就是互聯網與傳統產業碰撞時的產物。
用「方興未艾」這個詞來形容大數據產業的發展階段都還為時過早,目前的大數據產業只能說是小荷才露尖尖角。國內企業在第 1 代IT產業(硬體和軟體產業)中是明顯落後國外企業的;在第 2 代IT產業(互聯網產業)中,國內企業已經與國外企業差距不大甚至在很多方面超過了國外企業;希望在第 3 代IT產業(雲計算和大數據)浪潮中,國內企業能夠完全趕上並且超過國外企業,我們也認為這是很有可能的。

❼ 大數據是什麼概念

世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從政府到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。

所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?

七:最後北京開運聯合給您總結一下

不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。

1、從大數據的價值鏈條來分析,存在三種模式:

1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。

2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。

3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。

2、未來在大數據領域最具有價值的是兩種事物:

1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;

2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。

大 數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不
斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於
數據的應用需求和應用水平進入新的階段。

閱讀全文

與大數據推薦單一是什麼現象相關的資料

熱點內容
如何調出電腦主程序界面 瀏覽:254
微波遙感採用什麼技術 瀏覽:516
三菱plc改程序怎麼寫 瀏覽:107
交易貓蘋果區如何填寫 瀏覽:887
武昌東湖技術開發區在哪裡 瀏覽:142
spss年級屬於什麼類型的數據 瀏覽:37
如何看好市場龍頭 瀏覽:296
如何申請水果交易平台 瀏覽:357
如何在釘釘上用小閑小程序查成績 瀏覽:766
柳州鐵道職業技術學院哪些專業可以專升本 瀏覽:140
ajax不返回數據怎麼辦 瀏覽:791
抖音小程序怎麼放在視頻下方 瀏覽:628
壞道硬碟的數據怎麼導出 瀏覽:931
昆明西山區玩具批發市場在哪裡 瀏覽:677
程序員發布會是什麼 瀏覽:628
如何讓小程序有黏性 瀏覽:983
碧水源屬於哪個交易所 瀏覽:312
二手房交易哪些證 瀏覽:381
女性護理產品怎麼用 瀏覽:340
段然技術怎麼樣 瀏覽:183