① 大數據市場有多大 怎麼利用大數據賺錢
大數據市場有多大 怎麼利用大數據賺錢
「大數據的市場規模沒有天花板。」國務院發展研究中心信息中心研究處處長李廣乾認為。不過細想,這正是目前各大企業和資本瘋狂追逐大數據產業的重要原因。
「單獨討論大數據意義不大,它是依附於具體業務,和各個行業密切相關的。」李廣乾認為,大數據產業規模和兩大因素相關:一是經濟發展水平,需要大數據的業務越多,市場體量就越大;二是信息化發展水平,能夠產生數據的終端越多,數據就會越聚越多,而數據的生產是沒有上限的。目前,大數據的金礦還僅是開挖了「冰山一角」。全球來看,Gartner2016年最新的技術成熟度曲線顯示,大數據作為新興領域,已經進入應用發展階段,基礎設施建設帶來的規模性高速增長出現逐步放緩的趨勢,技術創新和商業模式創新推動各行業應用逐步成熟,應用創造的價值在市場規模中的比重日益增大,並成為新的增長動力。從總體規模看,2016年,全球大數據市場規模實現16.5%的增長,預計將連續3年保持增速在15%左右。同時,大數據成為全球IT支出新的增長點,2016年,有近40%的企業正在實施和擴大大數據技術的應用,另有30%計劃在未來12個月內應用大數據。「說大數據產業是一張畫得很大的餅顯然是片面的。」工信部賽迪研究院軟體所所長潘文預測,包括大數據硬體、大數據軟體、大數據服務等在內的大數據核心產業環節,2016年達到3100億元,將在2020年超過1萬億元;大數據關聯產業規模2016年超過5萬億元,將在2020年超過10萬億元;大數據融合產業規模2016年達到3.5萬億元,將在2020年超過20萬億元。「從大數據核心產業結構看,基於大數據的服務是大數據核心產業的主體,其規模約佔大數據核心產業規模的90%,未來,服務也將是大數據產業的最核心部分。」潘文說。做數據「搬運工」目前國內大數據公司分為兩類:一類是已有獲取大數據能力的公司,如網路、騰訊、阿里巴巴等互聯網巨頭及華為、浪潮、中興等企業,涵蓋了數據採集、數據存儲、數據分析、數據可視化及數據安全等領域;另一類則是初創大數據公司,依靠大數據工具,針對市場需求,為市場帶來創新方案並推動技術發展。不同的大數據公司,盈利模式也不相同。如果把大數據產業比作房地產開發,那麼海量數據就是地產開發時的土地資源,數據挖掘開發就是地產搭建蓋樓。大數據主要的盈利模式也是圍繞這兩方面展開,一是通過直接「搬運」數據賺錢,二是通過數據加工分析盈利。「我們就像一個自來水廠一樣,用戶要你提供干凈的自來水,對方可能是酒廠、飯店、飲料廠,他把你的水做成飲料或酒。」聚合數據就是一家主要依靠為客戶提供數據盈利的公司,公司創始人左磊對其商業模式作了一個形象的比喻。在開發APP應用過程中,左磊發現客戶對於數據的需求非常大,但他們本身卻沒有能力去做這些事情。聚合數據的主營業務,就是整合市面上有價值的數據源,從車輛違章信息、航班火車查詢、全國加油站實時油價,到在線試題、電影、股票,做成標准化的API(應用程序編程介面),開放給開發者、企業及微信公眾號用戶等使用,為他們免除數據收集、維護等環節。簡言之,聚合數據是一家數據源公司,充當的是數據「搬運工」的角色。在變現模式上,針對一些本身成本不高的服務,聚合數據會對用戶實行免費,而對一些成本相對高的服務,會按照每個介面或服務的成本收取不同的費用。2016年,聚合數據光API介面一項營收就超過1000萬元。聚合數據的盈利模式是數據買賣市場一個有代表性的類型。另一個代表性類型是,國內乃至全球第一家大數據交易所——貴陽大數據交易所,自2015年4月正式掛牌運營以來,僅用兩年多時間,就實現了可交易數據總量超過150PB,內容涵蓋政府、金融、交通等30大類領域,並於今年上半年實現正現金流,預計今年底累計交易流水將突破2億元人民幣。數據的「消化」和「利用」如果說搬運數據是秀肌肉的「體力活」,那麼分析數據並提供解決方案就是拼智商的「腦力活」,相當於把收集來的數據「消化」「利用」好。直接售賣數據是比較底層的盈利方式,而對數據進行處理加工則在商業模式上具備更多的想像空間。數據分析可大致分為直接提供數據分析工具和輸出解決方案兩種模式。潘文說,數據分析工具通常可以實現情報挖掘、輿情分析、銷售追蹤、精準營銷、個性化推薦、網站/APP分析等功能,收費方式採取按需購買,部分功能服務免費,部分功能服務收費。阿里雲的「數加」平台就是典型的數據工具盈利模式。阿里雲大數據事業部總監徐常亮表示,阿里雲「數加」平台,承載著阿里巴巴集團、螞蟻金服的數據,可提供一站式的數據計算、加工、處理等服務,用戶不用自建計算平台。此外,基於「數加」平台,阿里雲還提供數十款應用工具,覆蓋數據採集、計算引擎、數據加工、數據分析、機器學習、數據應用等數據生產全鏈條。計算引擎之上,「數加」平台提供了最豐富的雲端數據開發套件,包括數據集成、數據開發、調度系統、數據管理、運維視屏、數據質量、任務監控。在數據分析方面,通過移動數據分析產品,開發者可快速搭建日誌採集、分析系統;通過「數加」平台BI報表產品,3分鍾即可完成海量數據的分析報告。在機器學習方面,「數加」平台發布的機器學習工具,可基於海量數據實現對用戶行為、行業走勢、天氣、交通等的預測。大數據公司百分點的展廳內有一面弧形牆,可以24小時實時更新數據資料和圖譜。這面牆上有全網當日產品銷售統計和熱銷產品榜單,每一個產品都有詳情介紹。百分點研發總監蘇海波介紹,5.5億用戶的「畫像」匯總於此,包括購物偏好、網購金額變化趨勢、閱讀興趣等。用戶的任何網上行為都會成為大數據的一部分,經過篩選加入到用戶的數據中。通過與百分點合作,商戶可以根據用戶消費偏好,定向推送商品;旅行社可以定向推送旅遊行程信息和報價;新聞資訊APP則可以推送用戶感興趣的信息。在輸出解決方案上,大數據還可以應用到醫療、教育、零售、通信等傳統行業。通過大數據產生更多收益,節約成本,優化原有行業,衍生出新的商業模式。
② 大數據怎麼賺錢
選擇一個適合自己、適合市場的很重要
不要去跟風,要考慮自己做不做的了,不要看別人做什麼就去做,
入錯行,無利潤可言,可能好幾年的努力都浪費了,
獀下【蕭俊.峰】,對這領域是非常精通的,希望能對你有幚助!
如若您對我的答復滿意,請選擇「好評」,謝謝您的採納。
③ 做大數據真的能賺錢嗎
摘要 您好!很高興為您解答。為您得出以下有關解答:
④ 通過大數據如何賺錢
首先要確定自己有的「大數據」是什麼數據,大到怎樣的量級,其中包含的數據元素有多少;
其次找到自己擁有的數據本身的商業屬性,找到需要這些數據的用戶,並確定他們對這些數據需要是否剛性,以及調研可以為使用這些數據的用戶帶來哪些價值或者改善;
最後就是設計一套運營模式,讓這些數據變現。包括可以一次性的出售,這基本上不會有太多價值;更好的方式是數據動態更新,提供各種數據之間關聯分析和目標組合,分別按照不同用戶需要持續提供,也就可以長期的賺錢了。
市場上多數大數據本身並非真正的大數據,只是一部分數據資料而已!
⑤ 公司如何通過大數據賺錢
公司如何通過大數據賺錢
現代大數據項目具備巨大的節約成本的潛力,其效果對於過去的數據處理方式而言有如童話。但需要謹記的是,在投入時間和資源到大數據項目之前,首先要確認你的項目是收益大於成本的。只有傻瓜才會匆匆對一個點子一見鍾情並傾其所有。
大數據無疑是時下炙手可熱的流行詞彙,然而,我們鮮少看到具體大數據如何帶來收益,和具體如何實現的例子,這是怎麼回事呢?
多年來,在經歷了幾個通信和投行的大數據相關早期實施項目後,我認為這個新興技術的收益主要在於:實現對復雜系統更為精準的剖析,例如股票市場或供應鏈。(投行成為最早一批應用大數據分析的行業之一,可謂毫不意外。對利用技術提升效率,創造效益更為敏銳的商業模式,往往也是更賺錢的。)
在投行的日常工作中,為了精準地選擇投資機會、選購股票,有大量對文檔處理的需求,例如新聞簡報,財務報表。如果人工進行,工作量過於龐大。因此助理分析師們往往簡化他們的預測分析過程,並使用電子表格來完成絕大部分工作。通過大數據技術,投行可以整合各種信息,減少可能的(簡化分析帶來的)風險,從整體上帶來更優越的分析和預測能力。
公司如何通過大數據賺錢
通過大數據平台,股票經紀和投資經理們可以聚合各種來源的非格式化數據,輔助判斷哪些公司值得投資。所謂『非格式化數據』包括如公司新聞,產品評論,供應商數據,價格變化,將這些信息以所謂「大數據」形式整合,通過建模,幫助股票經紀決策買入或售出股票。
有些採用如上方式進行投資預測的公司,很注重節約實施成本,例如使用雲平台(如AWS),先從很小數量的伺服器開始,隨著獲益增長,逐步提高投入。一位我認識的分析師,從一家大投行離職創業後,在不到六個月的時間內,僅僅使用非常有限的投入,創立了一個盈利良好的大數據交易系統。
即便在傳統製造領域,大數據仍然可以提升預測能力。我曾經擔任過顧問的某歐洲一線汽車製造廠商,通過建立一個鋼材交易成本的分析系統,選擇更好的時機,以更優價格買入原材料。這個系統由開源Java框架Hadoop創建,整合了多個供應商的共計15Tb的數據,在兩年內為該公司節省了1600萬美元。
這個項目的成功主要有兩個原因:首先,公司有足夠的信息為所有的供應商建模;其次,該項目節省的原材料成本超過了實施這個項目的費用。
公司為何因為大數據虧錢
然而,並非每個大數據項目都會這樣成功。公司在大數據項目上以虧損告終的概率,有時和成功的概率相差無幾。大數據項目失敗的早期症狀有很多種,最常見的問題如:
步子邁太大:大數據並不需要一筆巨大的預算,如果懷著巨大的投入將帶來巨大回報的預期開始一個大數據項目,往往會產生問題。在正式開始前,明智的做法是,嘗試用有限的投入,在小范圍內測試這個技術是否確實能帶來預期的收益。按這樣的節奏,一個項目可以按部就班地隨著收益逐步提高,而逐步擴大投入規模,確保收益始終大於投入。
低估人力投入:在開始實施一個大數據系統前,問自己一個簡單的問題:這個項目是否可以不需要持續的人工支持來運作?如果答案是,需要人工支持,那麼建議停止項目。建立這樣一個項目往往意味著百萬級的損失,無法在有利潤情況下保持維護和運行。
迷信自然語言處理:大數據有個經常聽到的功能是,通過自然語言處理,將各種領域的各種數據處理成直接可讀可理解的形式。這聽起來確實很贊,但是在實際應用中,往往不盡如人意。自然語言處理仍然存在許多妨礙應用的限制,主要由於人工智慧的發展還不夠--而且在可見的10年內,這個情況可能不會有很大改觀。
現代大數據項目具備巨大的節約成本的潛力,其效果對於過去的數據處理方式而言有如童話。但需要謹記的是,在投入時間和資源到大數據項目之前,首先要確認你的項目是收益大於成本的。只有傻瓜才會匆匆對一個點子一見鍾情並傾其所有。
以上是小編為大家分享的關於公司如何通過大數據賺錢的相關內容,更多信息可以關注環球青藤分享更多干貨
⑥ 馬雲做大數據怎麼賺錢
隨著大數據時代的來臨,大數據早已不再神秘。帶給我們眾多的沖擊,每個人都應當與時俱進、不斷提升,放棄殘缺的守舊思想,大膽接受新的挑戰。
任何一家有EXCEL表格的公司,都敢說自己是大數據公司;任何一個地方政府公開有數字的PDF文檔,就敢說是政府大數據公開。以至於業界人士擔憂,某天大家再聽這個概念都麻木了,然而行業還是沒有做出多少事情。
區域數字鴻溝巨大
說起掘金大數據,一定繞不開政府數據。地方政府掌握著80%以上的數據。每隔一段時間,從中央到地方,都會發布關於大數據開放的政策。高層談新經濟,言必稱大數據。
而在執行層面,目前地方政府大多處於觀望狀態。關注政務數據領域的清華大學數據科學研究院執行副院長韓亦舜表示,政府數據開放並沒有那麼復雜,需要有地方能真正去實踐和摸索,做一些事情,當下所有的人都在談數據開放,但做實事的不多。
韓亦舜曾建議西部一些地方政府借大數據發展的機會,率先開放數據獲得先發優勢,另外同步做好信息化補課。
6月份,筆者見到一位來北京尋求合作的西部省份地理信息測繪局局長,他長期在部委工作,前些年調到地方當部門一把手,發展大數據思路清晰,不過讓他苦惱的是,當地信息化水平不高,很多地方沒有數據,有的數據還在紙上。
他醞釀出台一個規定,以後所有的圖都不準畫在紙上,必須上網,以電子化的形式存儲。當下他最想解決的問題是信息化,先收取數據,然後通過建立地方數據中心的形式,與企業合作,做地理信息垂直領域的數據開放和挖掘。
走在前沿的貴州省,希望以發展大數據彎道超車,實現新經濟的騰飛。然而從數據開放的程度來看,當地一些職能部門,所謂的公開數據還停留在提供PDF文件階段,遠非結構化的數據,按照國際數據公開標准來說,並不能算政府數據公開。
單從數據開放來看,思路最清晰規劃更具體的,還是廣東、上海等發達地區。對於地方政府的大數據園區來說,發達地區好比「富二代」,一出生就含著金湯匙,但大部分地區還是「窮二代」,需要更大力度的數據挖掘與開放。由於各地在大數據方面存在差距,不同區域的數字鴻溝會繼續深化。
飢渴的大數據創業公司
在掘金大數據的背景下,企業早已經等不及了。早些年,部分企業通過各種交易手段,獲得政府數據。在數據開放的背景下,部分企業還在依託不規范交易,已經有政府部門被巡視組查出了因數據交易衍生腐敗。
一部分企業希望參與政府數據公開進程,幫助政府做數據公開。比如數據堂公司與貴陽市政府共建數據生態城市。還有一批公司,則是急速擴張,跟各地政府成立相關的合資公司。
當然,還有轉型大數據二次創業的公司。在貴陽數博會上,筆者見到很多大數據公司,就是以前賣電腦和軟體開發的IT公司,轉型做大數據,業務范圍無所不在,包括智慧城市、軟體開發、智慧農業、醫療等。
除上述歸類外,企業為了獲取政府數據,採取各種「曲線救國」的招式。前不久,筆者熟悉的一家南方大數據創業公司,為了獲取某西部城市政府部門數據,報名參加當地的創業大賽,希望通過得獎,引起當地政府重視,達成數據合作。
這家公司的CEO在參賽間隙,拖著行李箱與當地國企聯絡,希望能夠以合資的形式成立公司,共同挖掘當地數據。
這位CEO還通過各種方式,找到該市分管大數據的負責人,希望能夠談成合作。他勾畫的藍圖很美好:獲取一個城市的數據,做成樣板,然後在全國復制,迅速從0到1成為該行業的「寡頭」企業。
不過,目前還沒有關於這家公司取得實質進展的消息,但這家公司尋求政府大數據開放的決心和路徑,頗具有典型性。
政府資源導向,仍是目前很多數據公司努力的方向。很多大數據公司在融資過程中,強調一定要有國有資本進入,而且堅決遠離境外資本。
從2015年國內最大的幾筆大數據創業公司的融資情況來看,幾乎都有國有資本進入,即便只佔很小的比重。在某大數據公司融資發布會上,筆者隨機問了幾家投資機構選擇投資這家公司的原因,答案驚人一致:有政府數據資源。
而在一些專家和專業投資人看來,從價值投資的角度,一是真正有技術優勢的公司,二是有自己數據源的公司。依託政府資源的公司,從長遠來說,並沒有太大的投資價值。
樂觀者認為,政府數據開放最終會走向規范化,有科技含量的公司最終會在泡沫破滅後存活下來。
BAT能否領軍?
BAT中的某一家,會成為全球最大的數據公司么?
在專業人士看來,媒體喜歡造概念,這個說法很不專業。因為數據就像石油一樣,每個地理區間都有,誰儲存了多少,很難量化和比較。
馬化騰和張小龍都說,他們很焦慮,因為用戶花在微信上的時間太多了。不過馬化騰又說,微信公眾號是騰訊前三年最偉大的發明,因為可以把人留在微信上,大家就離不開了。
BAT三家公司一方面通過自身的數據,做出反映數字中國的圖譜,甚至把脈經濟走向;另外也在建立自身的數據生態體系;以網路為代表,則認為大數據的最終應用是人工智慧。
京東CTO張晨告訴筆者,因為京東有自己的物流體系,其電商數據包括詳細的消費者畫像。張晨說,如果通過電商大數據分析,提高精準服務水平,能提高銷售一個百分點,對京東來說都是很大的大數據價值變現。
互聯網企業的數據,在整個大數據生態中,能夠起到多大作用,各方都在摸索。很多人認為,互聯網企業的數據價值被高估了。
比如韓亦舜認為,相對實體經濟來說,互聯網企業的數據,更多是第三產業,是對消費者端的,相對整個實體經濟,比如說製造業體系產生的數據,互聯網數據並不算多。
「互聯網只是個工具。」國家統計局一位原副局長在一次數據研討會上直言。他認為,互聯網是傳遞現代數據的工具,不能唱得比實體經濟還高。
至於BAT如何從大數據掘金,筆者聊了很多業內人,聽得都不太明白,仍不得解。一家企業CEO表示,現在大家的思路其實都不清晰。
6月份,馬雲在一次活動上說,阿里是一家大數據公司,不過我們也不知道怎麼用數據掙錢。
⑦ 大數據是怎麼賺錢的。
大數據將為社會帶來三方面變革:思維變革、商業變革、管理變革,各行業將大數據納入企業日常配置已成必然之勢。國際數據公司IDC預測,到2020年,企業基於大數據計算分析平台的支出將突破5000億美元。目前,我國大數據人才只有46萬,未來3到5年人才缺口達150萬之多。
⑧ 普通人如何利用大數據賺錢
普通人根本不會利用大數據,能夠利用大數據賺錢的,不普通了。一般都是倒賣信息,專業推廣廣告,賺取收益。或者利用大數據推薦商品,文章等。
⑨ 大數據公司怎麼賺錢
根據個人理解,大數據公司賺錢分為三個等級
1. 直接出售數據: 包括脫敏的各種交易、操作、用戶信息;互聯網抓取的公開信息
2. 對數據進行結構化分析後出售: 各種輿情監測,廣告投放,傳播分析等
3. 根據批量結構化後信息數據進行建模: 用於個性化推薦,走勢預測等
中介公司大概能做第一個級別的吧。
當然,後面還有人工智慧,只是目前依靠這個賺錢的公司還沒看到。
⑩ 大數據是如何賺錢和虧錢的
大數據是如何賺錢和虧錢的_數據分析師考試
大數據無疑是時下炙手可熱的流行詞彙,然而,我們鮮少看到大數據如何帶來收益,以及如何實現的例子,這是怎麼回事呢?
多年來,在經歷了幾個通信和投行的大數據相關早期實施項目後,我認為這個新興技術的收益主要在於:實現對復雜系統更為精準的剖析,例如股票市場或供應鏈。(投行成為最早一批應用大數據分析的行業之一,可謂毫不意外。對利用技術提升效率,創造效益更為敏銳的商業模式,往往也是更賺錢的。)
在投行的日常工作中,為了精準地選擇投資機會、選購股票,有大量對文檔處理的需求,例如新聞簡報,財務報表。如果人工進行,工作量過於龐大。因此助理分析師們往往簡化他們的預測分析過程,並使用電子表格來完成絕大部分工作。通過大數據技術,投行可以整合各種信息,減少可能的(簡化分析帶來的)風險,從整體上帶來更優越的分析和預測能力。
公司如何通過大數據賺錢?通過大數據平台,股票經紀和投資經理們可以聚合各種來源的非格式化數據,輔助判斷哪些公司值得投資。所謂『非格式化數據』包括如公司新聞,產品評論,供應商數據,價格變化,將這些信息以所謂「大數據」形式整合,通過建模,幫助股票經紀決策買入或售出股票。
有些採用如上方式進行投資預測的公司,很注重節約實施成本,例如使用雲平台(如AWS),先從很小數量的伺服器開始,隨著獲益增長,逐步提高投入。一位我認識的分析師,從一家大投行離職創業後,在不到六個月的時間內,僅僅使用非常有限的投入,創立了一個盈利良好的大數據交易系統。
即便在傳統製造領域,大數據仍然可以提升預測能力。我曾經擔任過顧問的某歐洲一線汽車製造廠商,通過建立一個鋼材交易成本的分析系統,選擇更好的時機,以更優價格買入原材料。這個系統由開源Java框架Hadoop創建,整合了多個供應商的共計15Tb的數據,在兩年內為該公司節省了1600萬美元。
這個項目的成功主要有兩個原因:首先,公司有足夠的信息為所有的供應商建模;其次,該項目節省的原材料成本超過了實施這個項目的費用。
公司為何因為大數據虧錢?然而,並非每個大數據項目都會這樣成功。公司在大數據項目上以虧損告終的概率,有時和成功的概率相差無幾。大數據項目失敗的早期症狀有很多種,最常見的問題如:
步子邁太大大數據並不需要一筆巨大的預算,如果懷著巨大的投入將帶來巨大回報的預期開始一個大數據項目,往往會產生問題。在正式開始前,明智的做法是,嘗試用有限的投入,在小范圍內測試這個技術是否確實能帶來預期的收益。按這樣的節奏,一個項目可以按部就班地隨著收益逐步提高,而逐步擴大投入規模,確保收益始終大於投入。
低估人力投入在開始實施一個大數據系統前,問自己一個簡單的問題:這個項目是否可以不需要持續的人工支持來運作?如果答案是,需要人工支持,那麼建議停止項目。建立這樣一個項目往往意味著百萬級的損失,無法在有利潤情況下保持維護和運行。
迷信自然語言處理大數據有個經常聽到的功能是,通過自然語言處理,將各種領域的各種數據處理成直接可讀可理解的形式。這聽起來確實很贊,但是在實際應用中,往往不盡如人意。自然語言處理仍然存在許多妨礙應用的限制,主要由於人工智慧的發展還不夠——而且在可見的10年內,這個情況可能不會有很大改觀。
現代大數據項目具備巨大的節約成本的潛力,其效果對於過去的數據處理方式而言有如童話。但需要謹記的是,在投入時間和資源到大數據項目之前,首先要確認你的項目是收益大於成本的。只有傻瓜才會匆匆對一個點子一見鍾情並傾其所有。
以上是小編為大家分享的關於大數據是如何賺錢和虧錢的的相關內容,更多信息可以關注環球青藤分享更多干貨