導航:首頁 > 數據處理 > 為什麼結構化數據佔比大

為什麼結構化數據佔比大

發布時間:2022-11-21 22:55:17

大數據解決方案主要用於存儲哪種類型的數據

大數據解決方案主要用於存儲二進制類型的數據。

數據還包括了結構化數據和非結構化數據,郵件,Word,圖片,音頻信息,視頻信息等各種類型數據,已經不是以往的關系型資料庫可以解決的了。非結構化數據的超大規模和增長,占總數據量的80~90%,比結構化數據增長快10倍到50倍,是傳統數據倉庫的10倍到50倍。

大數據特點:

海量數據有不同格式,第一種是結構化,我們常見的數據,還有半結據化網頁數據,還有非結構化視頻音頻數據。而且這些數據化他們處理方式是比較大的。數據類型繁多,如網路日誌、視頻、圖片、地理位置信息,等等。

② 什麼是大數據,大數據的特徵和結構有那些

大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據集合。」業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。
一是數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB(1PB=210TB),而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。當前,典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。
二是數據類型繁多(Variety)。這種類型的多樣性也讓數據被分為結構化數據和非結構化數據。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
三是價值密度低(Value)。價值密度的高低與數據總量的大小成反比。以視頻為例,一部1小時的視頻,在連續不間斷的監控中,有用數據可能僅有一二秒。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。

四是處理速度快(Velocity)。這是大數據區分於傳統數據挖掘的最顯著特徵。

③ 大數據概述及基本概念

  1. 大數據的定義首先,還是要重新審視大數據的定義。

行業里對大數據的定義有很多,有廣義的定義,也有狹義的定義。
廣義的定義,有點哲學味道——大數據,是指物理世界到數字世界的映射和提煉。通過發現其中的數據特徵,從而做出提升效率的決策行為。
狹義的定義,是技術工程師給的——大數據,是通過獲取、存儲、分析,從大容量數據中挖掘價值的一種全新的技術架構。
相比較而言,我還是喜歡技術定義,哈哈。
大家注意,關鍵詞我都在上面原句加粗了哈!
要做什麼?——獲取數據、存儲數據、分析數據
對誰做?——大容量數據
目的是什麼?——挖掘價值
獲取數據、存儲數據、分析數據,這一系列的行為,都不算新奇。我們每天都在用電腦,每天都在干這個事。
例如,每月的月初,考勤管理員會獲取每個員工的考勤信息,錄入Excel表格,然後存在電腦里,統計分析有多少人遲到、缺勤,然後扣TA工資。
但是,同樣的行為,放在大數據身上,就行不通了。換言之,傳統個人電腦,傳統常規軟體,無力應對的數據級別,才叫「大數據」。

2.大數據,到底有多大?


我們傳統的個人電腦,處理的數據,是GB/TB級別。例如,我們的硬碟,現在通常是1TB/2TB/4TB的容量。
TB、GB、MB、KB的關系,大家應該都很熟悉了:
1 KB = 1024 B (KB - kilobyte)

1 MB = 1024 KB (MB - megabyte)
1 GB = 1024 MB (GB - gigabyte)
1 TB = 1024 GB (TB - terabyte)
而大數據是什麼級別呢?PB/EB級別。
大部分人都沒聽過。其實也就是繼續翻1024倍:
1 PB = 1024 TB (PB - petabyte)
1 EB = 1024 PB (EB - exabyte)
只是看這幾個字母的話,貌似不是很直觀。我來舉個例子吧。
1TB,只需要一塊硬碟可以存儲。容量大約是20萬張照片或20萬首MP3音樂,或者是671部《紅樓夢》小說。
1PB,需要大約2個機櫃的存儲設備。容量大約是2億張照片或2億首MP3音樂。如果一個人不停地聽這些音樂,可以聽1900年。
1EB,需要大約2000個機櫃的存儲設備。如果並排放這些機櫃,可以連綿1.2公里那麼長。如果擺放在機房裡,需要21個標准籃球場那麼大的機房,才能放得下。
阿里、網路、騰訊這樣的互聯網巨頭,數據量據說已經接近EB級。
EB還不是最大的。目前全人類的數據量,是ZB級。
1 ZB = 1024 EB (ZB - zettabyte)
2011年,全球被創建和復制的數據總量是1.8ZB。
而到2020年,全球電子設備存儲的數據,將達到35ZB。如果建一個機房來存儲這些數據,那麼,這個機房的面積將比42個鳥巢體育場還大。
數據量不僅大,增長還很快——每年增長50%。也就是說,每兩年就會增長一倍。
目前的大數據應用,還沒有達到ZB級,主要集中在PB/EB級別。
大數據的級別定位:1 KB = 1024 B (KB - kilobyte)

1 MB = 1024 KB (MB - megabyte)
1 GB = 1024 MB (GB - gigabyte)
1 TB = 1024 GB (TB - terabyte)
1 PB = 1024 TB (PB - petabyte)
1 EB = 1024 PB (EB - exabyte)
1 ZB = 1024 EB (ZB - zettabyte)

3.數據的來源


數據的增長,為什麼會如此之快?
說到這里,就要回顧一下人類社會數據產生的幾個重要階段。
大致來說,是三個重要的階段。
第一個階段,就是計算機被發明之後的階段。尤其是資料庫被發明之後,使得數據管理的復雜度大大降低。各行各業開始產生了數據,從而被記錄在資料庫中。
這時的數據,以結構化數據為主(待會解釋什麼是「結構化數據」)。數據的產生方式,也是被動的。如果你對大數據開發感興趣,想系統學習大數據的話,可以戳我加入大數據技術學習交流群,私信管理員即可免費領取開發工具以及入門學習資料
第二個階段,是伴隨著互聯網2.0時代出現的。互聯網2.0的最重要標志,就是用戶原創內容。
隨著互聯網和移動通信設備的普及,人們開始使用博客、facebook、youtube這樣的社交網路,從而主動產生了大量的數據。
第三個階段,是感知式系統階段。隨著物聯網的發展,各種各樣的感知層節點開始自動產生大量的數據,例如遍布世界各個角落的感測器、攝像頭。
經過了「被動-主動-自動」這三個階段的發展,最終導致了人類數據總量的極速膨脹。

4.大數據的4Vs


行業里對大數據的特點,概括為4個V。前面所說的龐大數據體量,就是Volume(海量化)。除了Volume之外,剩下三個,分別是Variety、Velocity、Value。
我們一個一個來介紹。

④ 130mb的Excel數據導入資料庫後變成488mb,怎麼會變這么大

正常的,你是新手吧?
資料庫是結構化管理數據,佔用的空間肯定比Excel大,但帶來的好處是數據處理非常快。
excel本身就是壓縮過的報表,數據存儲沒有結構化可言,所以即使excel能容納104萬行,一萬多列,但你發現幾萬行數據excel就很慢了,而資料庫存數據多少對性能影響可以忽略,永遠比excel處理大量數據快的多。

性能有提升,自然要付出點代價,這代價就是存儲空間,空間換時間。

⑤ 結構化數據與非結構化數據有何區別

結構化和非結構化數據之間的差異逐漸變得清晰。除了存儲在關系資料庫和存儲非關系資料庫之外的明顯區別之外,最大的區別在於分析結構化數據與非結構化數據的便利性。針對結構化數據存在成熟的分析工具,但用於挖掘非結構化數據的分析工具正處於萌芽和發展階段。

並且非結構化數據要比結構化數據多得多。非結構化數據占企業數據的80%以上,並且以每年55%~65%的速度增長。如果沒有工具來分析這些海量數據,企業數據的巨大價值都將無法發揮。

⑥ 結構化數據和非結構化數據是什麼意思

結構化數據和非結構化數據是大數據的兩種類型,這兩者之間並不存在真正的沖突。客戶如何選擇不是基於數據結構,而是基於使用它們的應用程序:關系資料庫用於結構化數據,大多數其他類型的應用程序用於非結構化數據。

結構化數據也稱作行數據,是由二維表結構來邏輯表達和實現的數據,嚴格地遵循數據格式與長度規范,主要通過關系型資料庫進行存儲和管理。

與結構化數據相對的是不適於由資料庫二維表來表現的非結構化數據,包括所有格式的辦公文檔、XML、HTML、各類報表、圖片和音頻、視頻信息等。

(6)為什麼結構化數據佔比大擴展閱讀

結構化和非結構化數據之間的差異除了存儲在關系資料庫和存儲非關系資料庫之外的明顯區別之外,最大的區別在於分析結構化數據與非結構化數據的便利性。針對結構化數據存在成熟的分析工具,但用於挖掘非結構化數據的分析工具正處於萌芽和發展階段。

並且非結構化數據要比結構化數據多得多。非結構化數據占企業數據的80%以上,並且以每年55%~65%的速度增長。如果沒有工具來分析這些海量數據,企業數據的巨大價值都將無法發揮。

⑦ 大數據數據採集工具簡介

隨著大數據技術體系的發展,越來越多的企業應用大數據技術支撐自己的業務發展。數據採集作為大數據的起點,是企業主動獲取數據的一種重要手段。數據採集的多樣性、全面性直接影響數據質量。

企業獲取數據的渠道分為內部和外部兩個渠道。內部渠道包含自己建設的業務系統,如電商系統、門戶網站、門戶論壇等。外部渠道包含爬蟲系統爬取的數據、三方合作平台數據、公共社交平台數據等。那麼如何從這些渠道獲取數據?下面簡單地介紹一下常用的數據採集工具。

結構化數據採集工具。

結構化數據在分析型的原始數據佔比比較大,大部分經過預處理進入數據倉庫進一步多維分析和數據挖掘。常用的數據採集工具有:

1 Apache Flume

支持離線與實時數據導入,是數據集成的主要工具。

2 Apache Sqoop

主要使用JDBC等工具連接關系型資料庫與Hadoop生態圈的文件系統,通過配置文件配置雙向連接信息後,通過命令完成數據的導入導出。

半結構化數據採集工具

半結構化的數據多見於日誌格式。對於日誌採集的工具,比較常見的是

1 Logstash

Logstash與ElasticSearch、Kibana並稱為ELK,是採集日誌的黃金搭檔。

2 Apache Flume也多用於日誌文本類數據採集。

非結構化數據採集工具

1 DataX

DataX輕量級中間件,在關系型資料庫導入導出性能比較優異。支持多種數據類型的導入導出。

流式數據採集工具

1 Kafka

性能優異超高吞吐量。

Binlog日誌採集工具

1 Canal

基於MySQL資料庫增量日誌解析提供增量日誌訂閱和消費功能。

爬蟲採集框架與工具

1 Java棧,Nutch2、WebMagic等。

2 Python棧,Scrapy、PySpider

3 第三方爬蟲工具,八爪魚、爬山虎、後羿等等。

⑧ 大數據的最顯著特徵

大數據的最顯著特徵是數據量大。

大數據的顯而易見的特徵就是其龐大的數據規模。隨著信息技術的發展,互聯網規模的不斷擴大,每個人的生活都被記錄在了大數據之中,由此數據本身也呈爆發性增長。其中大數據的計量單位也逐漸發展,現如今對大數據的計量已達到EB了。

在數量龐大的互聯網用戶等因素的影響下,大數據的來源十分廣泛,因此大數據的類型也具有多樣性。大數據由因果關系的強弱可以分為三種,即結構化數據、非結構化數據、半結構化數據,它們統稱為大數據。資料表明,結構化數據在整個大數據中佔比較大,高達百分之七十五,但能夠產生高價值的大數據卻是非結構化數據。

大數據所有的價值在大數據的特徵中占核心地位,大數據的數據總量與其價值密度的高低關系是成反比的。同時對於任何有價值的信息,都是在處理海量的基礎數據後提取的。在大數據蓬勃發展的今天,人們一直探索著如何提高計算機演算法處理海量大數據,提取有價值信息的的速度這一難題。

大數據的高速特徵:

主要體現在數據數量的迅速增長和處理上。與傳統媒體相比,在如今大數據時代,信息的生產和傳播方式都發生了巨大改變,在互聯網和雲計算等方式的作用下,大數據得以迅速生產和傳播,此外由於信息的時效性,還要求在處理大數據的過程中要快速響應,無延遲輸入、提取數據。

⑨ 什麼是結構化數據.非結構華數據,之間有什麼區別

在信息社會,信息可以劃分為兩大類。一類信息能夠用數據或統一的結構加以表示,我們稱之為結構化數據,如數字、符號;而另一類信息無法用數字或統一的結構表示,如文本、圖像、聲音、網頁等,我們稱之為非結構化數據。結構化數據屬於非結構化數據,是非結構化數據的特例。
隨著網路技術的發展,特別是Internet和Intranet技術的飛快發展,使得非結構化數據的數量日趨增大。這時,主要用於管理結構化數據的關系資料庫的局限性暴露地越來越明顯。因而,資料庫技術相應地進入了「後關系資料庫時代」,發展進入基於網路應用的非結構化資料庫時代。所謂非結構化資料庫,是指資料庫的變長紀錄由若干不可重復和可重復的欄位組成,而每個欄位又可由若干不可重復和可重復的子欄位組成。簡單地說,非結構化資料庫就是欄位可變的資料庫。

⑩ 為什麼非結構化和半結構化數據的增長速率大於結構化的數據

通常用大數據(Bigdata)來形容數字化時代下創造出的大量非結構化和半結構化數據。大數據無疑是未來影響各行各業發展的最受矚目的技術之一。在2009年,全世界關於大數據的研究項目還非常有限,二從2011年開始,越來越多的管理者開始意識到,大數據將是未來發展不可規避的問題,到了2012年年底,世界財富500強企業中90%的企業都開展了大數據的項目。

那麼,大數據為什麼成為所有人關注的焦點?大數據帶來了什麼樣的本質性改變?為此,我們與中國計算機學會大數據學術帶頭人、中國人民大學信息學院院長杜小勇教授進行了訪談。

大數據帶來了三大根本改變:第一、大數據讓人們脫離了對演算法和模型的依賴,數據本身即可幫助人們貼近事情的真相;第二、大數據弱化了因果關系。大數據分析可以挖掘出不同要素之間的相關關系。人們不需要知道這些要素為什麼相關就可以利用其結果,在信息復雜錯綜的現代社會,這樣的應用將大大提高效率;第三、與之前的資料庫相關技術相比,大數據可以處理半結構化或非結構化的數據。這將使計算機能夠分析的數據范圍迅速擴大。

計算機科學在大數據出現之前,非常依賴模型以及演算法。人們如果想要得到精準的結論,需要建立模型來描述問題,同時,需要理順邏輯,理解因果,設計精妙的演算法來得出接近現實的結論。因此,一個問題,能否得到最好的解決,取決於建模是否合理,各種演算法的比拼成為決定成敗的關鍵。然而,大數據的出現徹底改變了人們對於建模和演算法的依賴。舉例來說,假設解決某一問題有演算法A和演算法B.在小量數據中運行時,演算法A的結果明顯優於演算法B.也就是說,就演算法本身而言,演算法A能夠帶來更好的結果;然而,人們發現,當數據量不斷增大時,演算法B在大量數據中運行的結果優於演算法A在小量數據中運行的結果。這一發現給計算機學科及計算機衍生學科都帶來了里程碑式的啟示:當數據越來越大時,數據本身(而不是研究數據所使用的演算法和模型)保證了數據分析結果的有效性。即便缺乏精準的演算法,只要擁有足夠多的數據,也能得到接近事實的結論。數據因此而被譽為新的生產力。

由於能夠處理多種數據結構,大數據能夠在最大程度上利用互聯網上記錄的人類行為數據進行分析。大數據出現之前,計算機所能夠處理的數據都需要前期進行結構化處理,並記錄在相應的資料庫中。但大數據技術對於數據的結構的要求大大降低,互聯網上人們留下的社交信息、地理位置信息、行為習慣信息、偏好信息等各種維度的信息都可以實時處理,立體完整地勾勒出每一個個體的各種特徵。

當數據足夠多的時候,不需要了解具體的因果關系就能夠得出結論。例如,Google在幫助用戶翻譯時,並不是設定各種語法和翻譯規則。而是利用Google資料庫中收集的所有用戶的用詞習慣進行比較推薦。Google檢查所有用戶的寫作習慣,將最常用、出現頻率最高的翻譯方式推薦給用戶。在這一過程中,計算機可以並不了解問題的邏輯,但是當用戶行為的記錄數據越來越多時,計算機就可以在不了解問題邏輯的情況之下,提供最為可靠的結果。可見,海量數據和處理這些數據的分析工具,為理解世界提供了一條完整的新途徑。

閱讀全文

與為什麼結構化數據佔比大相關的資料

熱點內容
有了美食和技術還需要什麼 瀏覽:518
豐田有什麼技術優點 瀏覽:361
如何選k40數據線 瀏覽:930
男裝推送優惠券怎麼給顧客發信息 瀏覽:553
歐姆龍有哪些大的代理商 瀏覽:740
一個保險代理點一年掙多少錢 瀏覽:263
手游代理為什麼會熱門 瀏覽:526
鄭州市哪個市場倉庫最多聚集 瀏覽:857
貨到了郵政所為什麼還沒有信息 瀏覽:861
為什麼網店的產品都那麼立體 瀏覽:626
禁止風險代理的案子有哪些 瀏覽:73
古董交易平台哪裡有賣 瀏覽:298
閩江職業技術學校學費多少啊 瀏覽:221
老手機來不了信息怎麼辦 瀏覽:309
旅遊產品什麼品牌最好 瀏覽:167
代理什麼不要錢 瀏覽:237
淘寶上小程序永久免費什麼意思 瀏覽:573
一隻活躍的股票一天交易量有多少 瀏覽:170
郵幣卡交易怎麼下載 瀏覽:559
目前都有哪些交易法 瀏覽:885