⑴ 對大數據的理解與思考
對大數據的理解與思考
首先,大數據的到來,對人們的觀念將帶來深遠的影響。
我們以前習慣認為:找到現象背後的原因,比清楚現象是什麼更重要。通過「塔吉特懷孕預測」的例子可以看到,通過關聯分析、聚類分析等數據挖掘方法,大家很容易找到事物之間的關系。但是,這些大數據分析結果,並不會直接告訴我們,事物之間為什麼存在這些關系。在不清楚為什麼存在這些關系之前,又的確看到了這些關系帶來了價值;所以,在大數據應用領域就需要改變以前的思考方。即:先找到「是什麼」再去找「為什麼」;清楚是什麼,與搞清楚為什麼同等重要。
手工統計時代,出於收集全部數據非常困難或代價巨大的原因,很多數據分析都是採用抽樣數據;但是,現在不同了,隨著信息技術的發展,現在很多領域都能夠方便的收集到全量數據。諸如無紙化辦公的興起、信息系統的使用、電子商務的發展等等,都為收集全量數據提供了便捷的條件。那麼,這時候數據的「樣本」=「全體數據」。這相對以前來說,也是革命性的影響。
在抽樣分析時代,個別樣本的質量甚至決定結果的質量。在大數據時代,這也變了,可以允許個別數據的不精確,甚至錯誤。舉個簡單例子來說明這個道理,比如在溫室大棚里放一隻溫度計,當這只溫度計有問題時,整個溫度都是不準確的。若在大棚里均勻分布十幾只溫度計,其中一隻有問題,對溫室大棚溫度的統計結果無礙大事,基本可以忽略其影響。
其次,大數據應用,影響商業變革和社會進步。
大數據應用正改變著企業的業務發展方式。比如:京東、天貓通過對交易數據的「二次利用」,尋找目標客戶、定向推薦商品。也正是這些數據的二次利用給他們提供了大量價值,促進了這些企業的發展,推動著他們在營銷、供應鏈與客戶服務等領域的管理變革。同時,交易數據並不因為二次利用,而降低其價值;這也是,大數據應用與傳統資源使用不同的地方。
數據的「混搭」分析,推動著商業發展和社會的進步。比如歷史天氣信息與航班誤點信息,這兩個不同領域的信息一塊兒分析,便可以推算未來幾天航班的誤點率。再比如,通過神經中樞腫瘤患病率和手機使用時間長短之間的大數據關聯分析,來研究神經中樞腫瘤患病率是否與手機使用時間長短有關系等等。
大數據的應用,也促生了很多商業機會。隨著大數據時代的到來,形成了很多大數據擁有公司,以及大數據技術公司;數據與技術的結合變促生了很多大數據應用,因此帶來了很多商業機會。例如,現在很多商業銀行對自己大量客戶的交易信息分析,規劃新的理財產品,與其他商家合作,聯合搞定向促銷等等。
再次,大數據時代不再有個人隱私,將形成新的信息安全機制。
現在還經常聽到諸如某某窺探我的隱私之類的話語,但是,在大數據時代幾乎沒有個人隱私,這不是駭人聽聞。因為,現在微博、搜索引擎、社交網路、電商購物,已經成了我們生活中必不可少的一部分。根據每個人在互聯網上留下的痕跡,通過大數據分析,很容易分析出一個人的愛好、習慣、性格、癖好等等。所以,大家都被「第三隻眼」實時監控著,在大數據時代,幾乎沒有個人隱私!
沒有個人隱私,是否就代表每個人可以隨便傳播別人隱私了呢?答案當然是否定的。因為傳播別人隱私是不道德的,甚至是違法的。所以,現在新的信息安全規則正在重新定位,其中一個基調是:讓數據使用者承擔責任,不能濫用別人的隱私;我個人感覺這也比較合理。
總結
大數據只是「新概念」,並不是「新事物」。過去數據就存在,只是我們沒有收集這些數據。但是,現在收集了這些數據,這個世界變得不一樣了;它更新了人們過去對數據應用的認識,加快了商業和社會發展的新陳代謝,從中也讓大家也看到了很多機會。大數據時代,已經到來。極目遠眺,也看不到盡頭。
⑵ 大數據是指什麼如何解釋
關於大數據,給出的定義是:
一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
簡單理解為:
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。
大數據的核心作用是數據價值化,簡單說就是大數據讓數據產生各種「價值」,這個數據價值化的過程就是大數據要做的主要事情。
⑶ 什麼是大數據 大數據單位 如何理解
大數據(big data)(巨量數據集合(IT行業術語))
指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,
是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、
高增長率和多樣化的信息資產。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
它們按照進率1024(2的十次方)來計算:
1 Byte =8 bit
1 KB = 1,024 Bytes = 8192 bit
1 MB = 1,024 KB = 1,048,576 Bytes
1 GB = 1,024 MB = 1,048,576 KB
1 TB = 1,024 GB = 1,048,576 MB
1 PB = 1,024 TB = 1,048,576 GB
1 EB = 1,024 PB = 1,048,576 TB
1 ZB = 1,024 EB = 1,048,576 PB
1 YB = 1,024 ZB = 1,048,576 EB
1 BB = 1,024 YB = 1,048,576 ZB
⑷ 如何理解大數據
大數據是現在各行各業都會提到的詞彙,那麼這個大數據到底是什麼意思,該如何理解呢?其實大數據字面意思就是有很多的數據集合,在不同的行業,這個數據是不同的。每一個行業通過對應的大數據可以快速的處理需求,給用戶反饋所需要的信息。同時大數據的積累也是一個漫長的過程,需要行業公司不斷的做積淀。
大數據是行業內對應數據的集合很多人一看到大數據就理解為很多數據的集合,其實這本身是沒有錯誤的。只不過這個數據集合是分行業的。比如電商行業的大數據可能是很多的訂單信息,用戶信息。快消品行業的大數據可能是眾多的產品以及經銷商數據。而房地產行業的大數據可能就是眾多買房者以及房價信息的數據。不同的行業對於數據的需求是不一樣的,所以對應的大數據也是不一樣的。
針對大數據你還有什麼知道的呢?歡迎大家留言評論!
⑸ 如何理解大數據時代
隨著信息化時代的發展,電腦、手機等高科技充斥著在生活之中。
「大數據」是近年來IT行業的熱詞。大數據在各個行業的應用逐漸變得廣泛起來。
大數據又稱巨量資料。指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。數據量大、數據種類多、要求實時性強,數據所蘊藏的價值成為了它的閃光點。總的來說,大數據是對大量、動態、能持續的數據的挖掘。
⑹ 大數據是什麼意思,大數據概念怎麼理解
大數據(bigdata,megadata),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Bigdata)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Bigdata)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Bigdata)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據應用的弊端
雖然大數據的擁護者看到了使用大數據的巨大潛力,但也有隱私倡導者擔心,因為越來越多的人開始收集相關數據,無論是他們是否會故意透露這些數據或通過社交媒體張貼,甚至他們在不知不覺中通過分享自己的生活而公布了一些具體的數字細節。
分析這些巨大的數據集會使我們的預測能力產生虛假的信息,將導致作出許多重大和有害的錯誤決定。此外,數據被強大的人或機構濫用,自私的操縱議程達到他們想要的結果。
⑺ 大數據的通俗解釋
大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
數據可以以多種形式被記錄,記錄的方式也是多種多樣,走過的路是否被導航軟體記錄,在外面吃東西使用手機點單或者支付那麼吃什麼就被記錄了,所有被記錄的數據最終都會以機器代碼存儲於伺服器,用於後續分析和查詢。
(7)大數據如何理解擴展閱讀
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。