Ⅰ 如何進行數據分析
很多人在進行數據分析的時候總是會有些迷惑,那就是不知道怎麼去進行數據分析或者數據分析到底要何處下手,其實這個問題的症結就是對數據分析沒有一個明確思路。在進行數據分析的時候,我們可以制定一個計劃,就能夠知道自己在各個階段該如何做好數據分析工作。簡單來說,可以總結為五個步驟,這五個步驟分別是確定分析目的和要分析的數據,分析源數據,處理源數據,得出結論,想出優化方案。做好了這些工作,才能夠做好數據分析。
首先說說確定分析目的和要分析的數據。我們肯定能意識到,數據分析中最關鍵的一個步驟,只有確定了步驟,才能夠知道自己分析收據的意義。確定數據的重要性在於選擇要分析的數據是否有邏輯性,如果沒有邏輯性,那麼數據分析出來的結果是錯誤的。並且,實際情況往往非常復雜,需要業務的實際情況去選定要分析哪些數據同樣可能決定分析結論。如果選錯了樣本,那分析結論就很大概率不正確。
第二說說觀察源數據。很多人拿到數據就開始處理、分析,其實這樣做並不妥,拿到數據的第一步應該是對數據做一個初步的判斷,如果經過一頓分析發現數據有很基礎的錯誤,會對自己以後的分析沒有自信的。異常數據是在這一步中要重點留意的,有一些數據有較為突出的波動。對於這樣的數據要探究它產生的原因,沒別的,還是要結合業務、結合自己的運營動作去想是否合理。
然後說說處理源數據。處理數據的話就是會使用數據分析的工具,一般來說Excel是夠用的。同時結合個人經驗說下,在用工具處理的時候,真的很可能出現操作錯誤,所以你要時刻提醒著點自己保持大腦運轉,要對數據的合理性不斷地質疑。由此可見數據分析的工具是需要大家多多學習的。
接著說說得出結論。得出結論這個步驟最容易用主觀視角去分析,帶著錯誤的思想方式去分析數據也能夠分析的出,所以數據分析一定要從客觀的角度進行分析,另外,同樣的數據不同的人分析,得出結論可能不同,差異就在於你們掌握、考慮的信息量可能不一樣,數據分析時盡可能讓自己敏感、細致,盡可能多地了解一切其他變數。
最後就是想出優化方案得出結論也不是數據最終的目的,需要大家不斷的發現問題,同時想出解決方案,得到反饋之後還要再發現問題,這才是正確的循環。
以上的內容就是對於數據分析工作的步驟了。數據分析工作的步驟就是確定分析目的和要分析的數據,分析源數據,處理源數據,得出結論,想出優化方案。這樣才能夠更好的進行數據分析工作,希望這篇文章能夠給大家帶來幫助。
Ⅱ 小角xrd怎麼分析是有序介孔結構
根據國際純粹與應用化學協會(IUPAC)的定義,孔徑小於2納米的稱為微孔;孔徑大於50納米的稱為大孔;孔徑在2到50納米之間的稱為介孔.介孔材料是一種孔徑介於微孔與大孔之間的具有巨大表面積和三維孔道結構的新型材料。有序介孔材料是指孔管道的排列規整有規律的介孔材料。
Ⅲ 材料比表面與孔徑怎麼分析數據
1)先做一個N2吸附測試,得到吸附等溫線;然後用不同的計算模型分析表面積和孔徑分布;
2)比表面積可以看BET數據或langmuir數據,大部分人喜歡用BET數據;
3)孔徑分布可以參考DFT、HK或BJH數據,這個由材料的孔徑確定。微孔材料一般參考DFT或HK數據,介孔材料一般參考DFT或BJH數據;若材料同時具有微孔和介孔,那個人覺得參考DFT數據最直觀。
Ⅳ 如何進行數據分析
收集數據
數據分析師的工作第一步就是收集數據,如果是內部數據,可以用SQL進行取數,如果是要獲取外部數據,數據的可靠真實性和全面性其實很難保證。
2. 數據清洗
數據清洗是整個數據分析過程中不可缺少的一個環節,其結果質量直接關繫到模型效果和最終結論。在實際操作中,數據清洗通常會占據分析過程的50%—80%的時間。需要進行處理的數據大概分成以下幾種:缺失值、重復值、異常值和數據類型有誤的數據。
3. 數據可視化
是為了准確且高效、精簡而全面地傳遞出數據帶來的信息和知識。可視化能將不可見的數據現象轉化為可見的圖形符號,能將錯綜復雜、看起來沒法解釋和關聯的數據,建立起聯系和關聯,發現規律和特徵,獲得更有商業價值的洞見和價值。在利用了合適的圖表後,直截了當且清晰而直觀地表達出來,實現了讓數據說話的目的。
4. 數據方向建設和規劃
不同行業和領域的側重點是不同的,可以是商業策略,也可以是市場營銷,是不固定的,要依據公司的戰略發展走。
5. 數據報告展示
數據分析師作為業務與IT的橋梁,與業務的需求溝通是其實是數據分析師每日工作的重中之重。在明確了分析方向之後,能夠讓數據分析師的分析更有針對性。如果沒和業務溝通好,數據分析師就開始擼起袖子幹活了,往往會是白做了。最後結果的匯總體現也非常重要,不管是PPT、郵件還是監控看板,選擇最合適的展示手段,將分析結果展示給業務團隊。