⑴ 光纖的速度一般是普通網線的幾倍
這個問法有問題。光纖的速度是不可估量的,要比較只能比較光纖上所傳送的速率是多少。而這個速率和局方的設備有關。所以你這個問題應該去問當地的電信局,沒有統一的答案。
⑵ 光纖輸出和同軸輸出的區別
光纖和同軸是兩種完全不同的通訊模式,其區別主要表現在以下幾方面:
1、傳輸介質不同:光纖是玻璃纖維為介質;同軸是銅芯為導體。
2、傳輸信號不同:光纖輸出的是光信號;同軸輸出電信號。
3、傳輸帶寬不同:光纖帶寬很高,可以達到幾十上百個G;而同軸一般不超過1G;
4、傳輸距離不同:光纖適合遠距離傳輸,長途骨幹網基本都是光纜傳輸,根據收發光設備一般直接傳輸可以達到幾十公里甚至上百公里,通過中繼放大器可以一段段延長距離,如中美之間的跨國海纜;同軸傳輸距離較短,一般只在幾百米左右。
⑶ 光纖和光纜通信知識
1960-電射及光纖之發明
1966-華裔科學家「光纖之父」高錕 預言光纖將用於通信。
1970-美國康寧公司成功研製成傳輸損耗只有20dm/km的光纖。
1977-首次實際安裝電話光纖網路
1978-FORT在法國首次安裝其生產之光纖電
1979-趙梓森拉制出我國自主研發的第一根實用光纖,被譽為「中國光纖之父」
1990-區域網路及其他短距離傳輸應用之光纖
2000-到屋邊光纖=>到桌邊光纖
2005 FTTH(Fiber To The Home)光纖直接到家庭 光纖的分類特徵按材質分,有無機光導纖維和高分子光導纖維,目前在工業上大量應用的是前者。無機光導纖維材料又分為單組分和多組分兩類。單組分即石英,主要原料為四氯化硅、三氯氧磷和三溴化硼等。其純度要求銅、鐵、鈷、鎳、錳、鉻、釩等過渡金屬離子雜質含量低於10ppb。除此之外,OH-離子要求低於10ppb。石英纖維已被廣泛使用。多組分的原料較多,主要有二氧化硅、三氧化二硼、硝酸鈉、氧化鉈等。這種材料尚未普及。高分子光導纖維是以透明聚合物製得的光導纖維,由纖維芯材和包皮鞘材組成。芯材為高純度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽絲製得的纖維,外層為含氟聚合物或有機硅聚合物等。
光導通信的研究和實用化,與光導纖維的低損耗密切相關。光能的損耗可否大大降低,關鍵在於材料純度的提高。玻璃材料中的雜質產生的光吸收,造成了最大的光損耗,其中過渡金屬離子特別有害。目前,由於玻璃材料的高純度化,這些雜質對光導纖維的損耗影響已很小。
石英玻璃光導纖維的優點是損耗低,當光波長為1.0~1.7μm(約14μm附近),損耗只有1dB/km,在1.55μm處最低,只有0.2dB/km。高分子光導纖維的光損耗較高,1982年,日本電信電報公司利用氘化甲基丙烯酸甲酯聚合抽絲作芯材,光損耗率降低到20dB/km。但高分子光導纖維的特點是能制大尺寸,大數值孔徑的光導纖維,光源耦合效率高,撓曲性好,微彎曲不影響導光能力,配列、粘接容易,便於使用,成本低廉。但光損耗大,只能短距離應用。光損耗在10~100dB/km的光導纖維,可傳輸幾百米。
光纖主要分以下兩大類:
1)傳輸點模數類
傳輸點模數類分單模光纖(Single Mode Fiber)和多模光纖(Multi Mode Fiber)。單模光纖的纖芯直徑很小, 在給定的工作波長上只能以單一模式傳輸,傳輸頻帶寬,傳輸容量大。多模光纖是在給定的工作波長上,能以多個模式同時傳輸的光纖。 與單模光纖相比,多模光纖的傳輸性能較差。
2)折射率分布類
折射率分布類光纖可分為跳變式光纖和漸變式光纖。跳變式光纖纖芯的折射率和保護層的折射率都是一個常數。 在纖芯和保護層的交界面,折射率呈階梯型變化。漸變式光纖纖芯的折射率隨著半徑的增加按一定規律減小, 在纖芯與保護層交界處減小為保護層的折射率。纖芯的折射率的變化近似於拋物線。 光纖結構及種類光及其特性:
1.光是一種電磁波
可見光部分波長范圍是:390~760nm(毫微米)。大於760nm部分是紅外光,小於390nm部分是紫外光。光纖中應用的是:850,1300,1550三種。
2.光的折射,反射和全反射。
因光在不同物質中的傳播速度是不同的,所以光從一種物質射向另一種物質時,在兩種物質的交界面處會產生折射和反射。而且,折射光的角度會隨入射光的角度變化而變化。當入射光的角度達到或超過某一角度時,折射光會消失,入射光全部被反射回來,這就是光的全反射。不同的物質對相同波長光的折射角度是不同的(即不同的物質有不同的光折射率),相同的物質對不同波長光的折射角度也是不同。光纖通訊就是基於以上原理而形成的。
1.光纖結構:
光纖裸纖一般分為三層:中心高折射率玻璃芯(芯徑一般為50或62.5μm),中 間為低折射率硅玻璃包層(直徑一般為125μm),最外是加強用的樹脂塗層。
2.數值孔徑:
入射到光纖端面的光並不能全部被光纖所傳輸,只是在某個角度范圍內的入射光才可以。這個角度就稱為光纖的數值孔徑。光纖的數值孔徑大些對於光纖的對接是有利的。不同廠家生產的光纖的數值孔徑不同(AT&T CORNING)。
3.光纖的種類:
A.按光在光纖中的傳輸模式可分為:單摸光纖和多模光纖。
多模光纖:中心玻璃芯較粗(50或62.5μm),可傳多種模式的光。但其模間色散較大,這就限制了傳輸數字信號的頻率,而且隨距離的增加會更加嚴重。例如:600MB/KM的光纖在2KM時則只有300MB的帶寬了。因此,多模光纖傳輸的距離就比較近,一般只有幾公里。單模光纖:中心玻璃芯較細(芯徑一般為9或10μm),只能傳一種模式的光。因此,其模間色散很小,適用於遠程通訊,但其色度色散起主要作用,這樣單模光纖對光源的譜寬和穩定性有較高的要求,即譜寬要窄,穩定性要好。
單模光纖(Single-mode Fiber):一般光纖跳纖用**表示,接頭和保護套為藍色;傳輸距離較長。
多模光纖(Multi-mode Fiber):一般光纖跳纖用橙色表示,也有的用灰色表示,接頭和保護套用米色或者黑色;傳輸距離較短。
B.按最佳傳輸頻率窗口分:常規型單模光纖和色散位移型單模光纖。
常規型:光纖生產廠家將光纖傳輸頻率最佳化在單一波長的光上,如1300nm。
色散位移型:光纖生產長家將光纖傳輸頻率最佳化在兩個波長的光上,如:1300nm和1550nm。
C.按折射率分布情況分:突變型和漸變型光纖。
突變型:光纖中心芯到玻璃包層的折射率是突變的。其成本低,模間色散高。適用於短途低速通訊,如:工控。但單模光纖由於模間色散很小,所以單模光纖都採用突變型。
漸變型光纖:光纖中心芯到玻璃包層的折射率是逐漸變小,可使高模光按正弦形式傳播,這能減少模間色散,提高光纖帶寬,增加傳輸距離,但成本較高,現在的多模光纖多為漸變型光纖。
4.常用光纖規格:
單模:8/125μm,9/125μm,10/125μm
多模:50/125μm,歐洲標准
62.5/125μm,美國標准
工業,醫療和低速網路:100/140μm,200/230μm
塑料:98/1000μm,用於汽車控制 光纖的衰減造成光纖衰減的主要因素有:本徵,彎曲,擠壓,雜質,不均勻和對接等。
本徵:是光纖的固有損耗,包括:瑞利散射,固有吸收等。
彎曲:光纖彎曲時部分光纖內的光會因散射而損失掉,造成的損耗。
擠壓:光纖受到擠壓時產生微小的彎曲而造成的損耗。
雜質:光纖內雜質吸收和散射在光纖中傳播的光,造成的損失。
不均勻:光纖材料的折射率不均勻造成的損耗。
對接:光纖對接時產生的損耗,如:不同軸(單模光纖同軸度要求小於0.8μm),端面與軸心不垂直,端面不平,對接心徑不匹配和熔接質量差等。 光纖傳輸優點直到1960年,美國科學家Maiman發明了世界上第一台激光器後,為光通訊提供了良好的光源。隨後二十多年,人們對光傳輸介質進行了攻關,終於製成了低損耗光纖,從而奠定了光通訊的基石。從此,光通訊進入了飛速發展的階段。
光纖傳輸有許多突出的優點:
1。頻帶寬
頻帶的寬窄代表傳輸容量的大小。載波的頻率越高,可以傳輸信號的頻帶寬度就越大。在VHF頻段,載波頻率為48.5MHz~300Mhz。帶寬約250MHz,只能傳輸27套電視和幾十套調頻廣播。可見光的頻率達100000GHz,比VHF頻段高出一百多萬倍。盡管由於光纖對不同頻率的光有不同的損耗,使頻帶寬度受到影響,但在最低損耗區的頻帶寬度也可達30000GHz。目前單個光源的帶寬只佔了其中很小的一部分(多模光纖的頻帶約幾百兆赫,好的單模光纖可達10GHz以上),採用先進的相干光通信可以在30000GHz范圍內安排2000個光載波,進行波分復用,可以容納上百萬個頻道。
2.損耗低
在同軸電纜組成的系統中,最好的電纜在傳輸800MHz信號時,每公里的損耗都在40dB以上。相比之下,光導纖維的損耗則要小得多,傳輸1、31um的光,每公里損耗在0.35dB以下若傳輸1.55um的光,每公里損耗更小,可達0.2dB以下。這就比同軸電纜的功率損耗要小一億倍,使其能傳輸的距離要遠得多。此外,光纖傳輸損耗還有兩個特點,一是在全部有線電視頻道內具有相同的損耗,不需要像電纜干線那樣必須引人均衡器進行均衡;二是其損耗幾乎不隨溫度而變,不用擔心因環境溫度變化而造成干線電平的波動。
3.重量輕
因為光纖非常細,單模光纖芯線直徑一般為4um~10um,外徑也只有125um,加上防水層、加強筋、護套等,用4~48根光纖組成的光纜直徑還不到13mm,比標准同軸電纜的直徑47mm要小得多,加上光纖是玻璃纖維,比重小,使它具有直徑小、重量輕的特點,安裝十分方便。
4.抗干擾能力強
因為光纖的基本成分是石英,只傳光,不導電,不受電磁場的作用,在其中傳輸的光信號不受電磁場的影響,故光纖傳輸對電磁干擾、工業干擾有很強的抵禦能力。也正因為如此,在光纖中傳輸的信號不易被**,因而利於保密。
5.保真度高
因為光纖傳輸一般不需要中繼放大,不會因為放大引人新的非線性失真。只要激光器的線性好,就可高保真地傳輸電視信號。實際測試表明,好的調幅光纖系統的載波組合三次差拍比C/CTB在70dB以上,交調指標cM也在60dB以上,遠高於一般電纜干線系統的非線性失真指標。
6.工作性能可靠
我們知道,一個系統的可靠性與組成該系統的設備數量有關。設備越多,發生故障的機會越大。因為光纖系統包含的設備數量少(不像電纜系統那樣需要幾十個放大器),可靠性自然也就高,加上光纖設備的壽命都很長,無故障工作時間達50萬~75萬小時,其中壽命最短的是光發射機中的激光器,最低壽命也在10萬小時以上。故一個設計良好、正確安裝調試的光纖系統的工作性能是非常可靠的。 光纜就是平常說的大對數電纜,放水、防火,一般用在電話上。大對數線纜一般分為3類大對數和5類大對數,又分為:5對10對20對25對30對50對100對200對300對
一般來說大對數線纜在弱電工程中用做 語音主幹 比較常用
⑷ 雙絞線、光纖、同軸電纜三者的區別
三者的區別主要如下:
一、雙絞線
1.具有抗干擾能力強、傳輸距離遠、布線容易、價格低廉等許多優點。
2.由於雙絞線對信號也存在著較大的衰減,所以傳輸距離遠時,信號的頻率不能太高,而高速信號比如乙太網則只能限制在100m以內。
3.對於視頻信號而言,帶寬達到6MHz,如果直接在雙絞線內傳輸,也會衰減很大,所以視頻信號在雙絞線上要實現遠距離傳輸,必須進行放大和補償,雙絞線視頻傳輸設備就是完成這種功能。
4.雙絞線和雙絞線視頻傳輸設備價格都很便宜,不但沒有增加系統造價,反而在距離增加時其造價與同軸電纜相比下降了許多。所以,監控系統中用雙絞線進行傳輸具有明顯的優勢。
二、光纖
1.光纖以光脈沖的形式來傳輸信號,因此材質也以玻璃或有機玻璃為主。它由纖維芯、包層和保護套組成。
2.光纖的結構和同軸電纜很類似,中心為一根由玻璃或透明塑料製成的光導纖維,周圍包裹著保護材料,根據需要還可以多根光纖並合在一根光纜裡面
3.光纖最大的特點就是傳導的是光信號,因此不受外界電磁信號的干擾,信號的衰減速度很慢,所以信號的傳輸距離比以上傳送電信號的各種網線要遠得多,並且特別適用於電磁環境惡劣的地方。
4.由於光纖的光學反射特性,一根光纖內部可以同時傳送多路信號,所以光纖的傳輸速度可以非常的高,理論上光纖網路最高可達到50000Gbps 50Tbps的速度。
5.使用光纖作為網路傳輸介質,需要一定的專業知識和光端收發器等專用設備,因此成本投入更大,在一般的應用中較少採用。
三、同軸電纜
1.同軸電纜,是由一層層的絕緣線包裹著中央銅導體的電纜線。它的特點是抗干擾能力好,傳輸數據穩定,價格也便宜,同樣被廣泛使用,如閉路電視線等。
2.同軸細電纜線一般市場售價幾元一米,不算太貴。同軸電纜用來和BNC頭相連,市場上賣的同軸電纜線一般都是已和BNC頭連接好了的成品,大家可直接選用。
3.根據對同軸電纜自身特性的分析,當信號在同軸電纜內傳輸時其受到的衰減與傳輸距離和信號本身的頻率有關。一般來講,信號頻率越高,衰減越大。
4.視頻信號的帶寬很大,達到6MHz,並且,圖象的色彩部分被調制在頻率高端,這樣,視頻信號在同軸電纜內傳輸時不僅信號整體幅度受到衰減,而且各頻率分量衰減量相差很大,特別是色彩部分衰減最大。
5.同軸電纜只適合於近距離傳輸圖象信號,當傳輸距離達到200米左右時,圖象質量將會明顯下降,特別是色彩變得暗淡,有失真感。
6.同軸放大器對視頻信號具有一定的放大,並且還能通過均衡調整對不同頻率成分分別進行不同大小的補償,以使接收端輸出的視頻信號失真盡量小。
7.在監控系統中使用同軸電纜時,為了保證有較好的圖象質量,一般將傳輸距離范圍限制在四、五百米左右。
8.另外,同軸電纜在監控系統中傳輸圖象信號還存在著一些缺點:
(1)同軸電纜本身受氣候變化影響大,圖象質量受到一定影響;
(2)同軸電纜較粗,在密集監控應用時布線不太方便;
(3)同軸電纜一般只能傳視頻信號,如果系統中需要同時傳輸控制數據、音頻等信號時,則需要另外布線;
(4)同軸電纜抗干擾能力有限,無法應用於強干擾環境;
(5)同軸放大器還存在著調整困難的缺點。
(4)光纖傳輸數據量是同軸的多少倍擴展閱讀:
光纖傳輸有許多突出的優點:
一、頻帶寬
頻帶的寬窄代表傳輸容量的大小。載波的頻率越高,可以傳輸信號的頻帶寬度就越大。
在VHF頻段,載波頻率為48.5MHz~300Mhz。帶寬約250MHz,只能傳輸27套電視和幾十套調頻廣播。可見光的頻率達100000GHz,比VHF頻段高出一百多萬倍。
盡管由於光纖對不同頻率的光有不同的損耗,使頻帶寬度受到影響,但在最低損耗區的頻帶寬度也可達30000GHz。
目前單個光源的帶寬只佔了其中很小的一部分(多模光纖的頻帶約幾百兆赫,好的單模光纖可達10GHz以上),採用先進的相干光通信可以在30000GHz范圍內安排2000個光載波,進行波分復用,可以容納上百萬個頻道。
二、損耗低
在同軸電纜組成的系統中,最好的電纜在傳輸800MHz信號時,每公里的損耗都在40dB以上。
相比之下,光導纖維的損耗則要小得多,傳輸1.31um的光,每公里損耗在0.35dB以下若傳輸1.55um的光,每公里損耗更小,可達0.2dB以下。這就比同軸電纜的功率損耗要小一億倍,使其能傳輸的距離要遠得多。
此外,光纖傳輸損耗還有兩個特點,一是在全部有線電視頻道內具有相同的損耗,不需要像電纜干線那樣必須引入均衡器進行均衡;二是其損耗幾乎不隨溫度而變,不用擔心因環境溫度變化而造成干線電平的波動。
三、重量輕
光纖非常細,單模光纖芯線直徑一般為4um~10um,外徑也只有125um,加上防水層、加強筋、護套等,用4~48根光纖組成的光纜直徑還不到13mm,加上光纖是玻璃纖維,比重小,使它具有直徑小、重量輕的特點,安裝十分方便。
四、抗干擾能力強
因為光纖的基本成分是石英,只傳光,不導電,不受電磁場的作用,在其中傳輸的光信號不受電磁場的影響,故光纖傳輸對電磁干擾、工業干擾有很強的抵禦能力。
也正因為如此,在光纖中傳輸的信號不易被竊聽,因而利於保密。
五、保真度高
因為光纖傳輸一般不需要中繼放大,不會因為放大引入新的非線性失真。只要激光器的線性好,就可高保真地傳輸電視信號。
實際測試表明,好的調幅光纖系統的載波組合三次差拍比C/CTB在70dB以上,交調指標cM也在60dB以上,遠高於一般電纜干線系統的非線性失真指標。
六、工作性能可靠
我們知道,一個系統的可靠性與組成該系統的設備數量有關。
設備越多,發生故障的機會越大。因為光纖系統包含的設備數量少,可靠性自然也就高,加上光纖設備的壽命都很長,無故障工作時間達50萬~75萬小時,其中壽命最短的是光發射機中的激光器,最低壽命也在10萬小時以上。
故一個設計良好、正確安裝調試的光纖系統的工作性能是非常可靠的。
七、成本不斷下降
目前,有人提出了新摩爾定律,也叫做光學定律(Optical Law)。該定律指出,光纖傳輸信息的帶寬,每6個月增加1倍,而價格降低1倍。
光通信技術的發展,為Internet寬頻技術的發展奠定了非常好的基礎。這就為大型有線電視系統採用光纖傳輸方式掃清了最後一個障礙。
由於製作光纖的材料(石英)來源十分豐富,隨著技術的進步,成本還會進一步降低;而電纜所需的銅原料有限,價格會越來越高。顯然,今後光纖傳輸將占絕對優勢,成為建立全省、以至全國有線電視網的最主要傳輸手段。
⑸ 光纖輸出和同軸輸出的區別
光纖和同軸是兩種完全不同的通訊模式,其區別主要表現在以下幾方面:
1、傳輸介質不同:光纖是玻璃纖維為介質;同軸是銅芯為導體。
2、傳輸信號不同:光纖輸出的是光信號;同軸輸出電信號。
3、傳輸帶寬不同:光纖帶寬很高,可以達到幾十上百個G;而同軸一般不超過1G;
4、傳輸距離不同:光纖適合遠距離傳輸,長途骨幹網基本都是光纜傳輸,根據收發光設備一般直接傳輸可以達到幾十公里甚至上百公里,通過中繼放大器可以一段段延長距離,如中美之間的跨國海纜;同軸傳輸距離較短,一般只在幾百米左右。
⑹ 光纜的傳送速率和同軸電纜的傳送速率差多少倍
一般雙絞線速率較慢; 從最高速率來說,同軸電纜更強一些。 從普通家用來說,目前基本上都是使用雙絞線,但這並不是因為雙絞線的傳輸速率更快,最早的網路傳輸是使用那種普通的同軸電纜,網卡也都是這樣的介面,但更主要是因為成本原因,雙絞線。
⑺ 求光纖傳輸數據的原理
光纖傳輸具有衰減小、頻帶寬、抗干擾性強、安全性能高、體積小、重量輕等優點,所以在長距離傳輸和特殊環境等方面具有無法比擬的優勢。傳輸介質是決定傳輸損耗的重要因素,決定了傳輸信號所需中繼的距離,光纖作為光信號的傳輸介質具有低損耗的特點,光纖的頻帶可達到1.0GHz以上,一般圖像的帶寬只有8MHz,一個通道的圖象用一芯光纖傳輸綽綽有餘,在傳輸語音、控制信號或接點信號方面更為優勢t光纖傳輸中的載波是光波,光波是頻率極高的電磁波,遠遠比電波通訊中所使用的頻率高,所以不受干擾。且光纖採用的玻璃材質,不導電,不會因斷路、雷擊等原因產生火花,因此安全性強,在易燃,易爆等場合特別適用。
光纖傳輸系統主要由三部分組成:光源(又稱光發送機),傳輸介質、檢測器(又稱光接收機)。計算機網路之間的光纖傳輸中,光源和檢測器的工作一般都是用光纖收發器完成的,光纖收發器簡單的來說就是實現雙絞線與光纖連接的設備,其作用是將雙絞線所傳輸的信號轉換成能夠通過光纖傳輸的信號(光信號)。當然也是雙向的,同樣能將光纖傳輸的信號轉換能夠在雙絞線中傳輸的信號,實現網路間的數據傳輸。在普通的視、音頻、數據等傳輸過程中,光源和檢測器的工作一般都是由光端機完成的,光端機就是將多個E1信號變成光信號並傳輸的設備,所謂E1是一種中繼線路數據傳輸標准,我國和歐洲的標准速率為2.048Mbps,光端機的主要作用就是實現電一光、光一電的轉換。由其轉換信號分為模擬式光端機和數字式光端機。因此,光纖傳輸系統按傳輸信號可分為數字傳輸系統和模擬傳輸系統。模擬傳輸系統是把光強進行模擬調制,將輸入信號變為傳輸信號的振幅(頻率或相位)的連續變化。數字傳輸系統是把輸入的信號變換成「1」,「O」脈沖信號,並以其作為傳輸信號,在接受端再還原成原來的信號。當然,隨著光纖傳輸信號的不同所需要的設備有所不同。光纖作為傳輸介質,是光纖傳輸系統的重要因素。可按不同的方式進行分類:按照傳輸模式來劃分: 光線只沿光纖的內芯進行傳輸, 只傳輸主模我們稱之為單模光纖(Single—Mode)。有多個模式在光纖中傳輸,我們稱這種光纖為多模光纖(Multi-Mode)。
按照纖芯直徑來劃分:緩變型多模光纖、緩變增強型多模光纖和緩變型單模光纖按照光纖芯的折射率分布來劃分:階躍型光纖(Step index fiber),簡稱SIF;梯度型光纖(Graded index fiber),簡稱GIF;環形光纖(river fiber);W 型光纖。
光纜:點對點光纖傳輸系統之間的連接通過光纜。光纜含1根光纖(稱單纖),有2根光纖(稱雙纖),或者更多。