導航:首頁 > 數據處理 > 市場數據分析有哪些流程

市場數據分析有哪些流程

發布時間:2022-11-02 14:02:13

數據分析的流程是什麼

1、明確分析的目的,提出問題。只有弄清楚了分析的目的是什麼,才能准確定位分析因子,提出有價值的問題,提供清晰的指引方向。
2、數據採集。收集原始數據,數據來源可能是豐富多樣的,一般有資料庫、互聯網、市場調查等。具體辦法可以通過加入“埋點”代碼,或者使用第三方的數據統計工具。

3、數據處理。對收集到的原始數據進行數據加工,主要包括數據清洗、數據分組、數據檢索、數據抽取等處理方法。

4、數據探索。通過探索式分析檢驗假設值的形成方式,在數據之中發現新的特徵,對整個數據集有個全面認識,以便後續選擇何種分析策略。

5、分析數據。數據整理完畢,就要對數據進行綜合分析和相關分析,需要對產品、業務、技術等了如指掌才行,常常用到分類、聚合等數據挖掘演算法。Excel是最簡單的數據分析工具,專業數據分析工具有R語言、Python等。

6、得到可視化結果。藉助可視化數據,能有效直觀地表述想要呈現的信息、觀點和建議,比如金字塔圖、矩陣圖、漏斗圖、帕累托圖等,同時也可以使用報告等形式與他人交流。

㈡ 數據分析的基本流程是什麼

數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

㈢ 數據分析工作流程有哪些

1、數據獲取


從字面的意思上講,就是獲取數據。數據獲取看似簡單,但是需要把握對問題的商業理解,轉化成數據問題來解決,直白點講就是需要哪些數據,從哪些角度來分析,界定問題後,再進行數據採集。此環節,需要數據分析師具備結構化的邏輯思維。


2、數據處理


數據的處理需要掌握有效率的工具,這些工具有很多,比如Excel、SQL等等,Excel及高端技能:基本操作、函數公式、數據透視表、VBA程序開發。


3、分析數據


分析數據往往需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。因此,熟練掌握一些統計分析工具不可免。我們可學習SPSS,而SPSS不用編程,簡單易學。十分適合新手,同時經典挖掘軟體,需要編程。而R語言開源軟體,新流行,對非結構化數據處理效率上更高,需編程。


4、數據可視化


就目前而言,很多數據分析工具已經涵蓋了數據可視化部分,只需要把數據結果進行有效的呈現和演講匯報就可以了。你所做的前期一系列的工作展示給你的領導。

㈣ 數據分析的五個步驟

我們將數據分析過程組織為五個步驟:提問、整理、探索、得出結論和傳達結果。以下是關鍵要點的概述,但你可以選擇跳過。我們將在後面的部分中演練每一步,所以你將很快熟悉整個過程。

第 1 步:提問
你要麼獲取一批數據,然後根據它提問,要麼先提問,然後根據問題收集數據。在這兩種情況下,好的問題可以幫助你將精力集中在數據的相關部分,並幫助你得出有洞察力的分析。

第 2 步:整理數據
你通過三步來獲得所需的數據:收集,評估,清理。你收集所需的數據來回答你的問題,評估你的數據來識別數據質量或結構中的任何問題,並通過修改、替換或刪除數據來清理數據,以確保你的數據集具有最高質量和盡可能結構化。

第 3 步:執行 EDA(探索性數據分析)
你可以探索並擴充數據,以最大限度地發揮你的數據分析、可視化和模型構建的潛力。探索數據涉及在數據中查找模式,可視化數據中的關系,並對你正在使用的數據建立直覺。經過探索後,你可以刪除異常值,並從數據中創建更好的特徵,這稱為特徵工程。

第 4 步:得出結論(或甚至是做出預測)
這一步通常使用機器學習或推理性統計來完成,不在本課程范圍內,本課的重點是使用描述性統計得出結論。

第 5 步:傳達結果
你通常需要證明你發現的見解及傳達意義。或者,如果你的最終目標是構建系統,則通常需要分享構建的結果,解釋你得出設計結論的方式,並報告該系統的性能。傳達結果的方法有多種:報告、幻燈片、博客帖子、電子郵件、演示文稿,甚至對話。數據可視化總會給你呈現很大的價值。

㈤ 數據分析的流程是什麼

①拆分工作項


運營是一個包含了諸多瑣碎事項的工作,運營人員要會拆分自己的工作項,並根據不同工作項的特點有針對地對特定的運營數據進行分析,才能事半功倍。


②建立指標體系


拆分完工作項後,針對每一個工作項有不同的指標,我們要根據工作項的特點進一步拆分和細化運營數據指標,然後通過對每一個指標的分析來判斷運營問題並不斷優化運營方案。拆分的維度可以按照數據的包含結構,也可以按照每一個工作項包含的子項進行拆分。


③細化分析目標


細化分析目標是指根據運營目標,確定能夠進行優化的數據點。


④提取處理數據


在提取數據這里涉及一個數據埋點的問題,在產品設計的早期,運營人員就要規劃好運營關鍵點,列出埋點清單提交給開發人員,以免後期運營過程中想要查看某一個數據但卻沒有數據記錄信息。


⑤數據分析總結


一般來說,要說明問題出現在什麼地方,哪些地方是可以進行優化改進的。


⑥反饋及投入應用


仔細觀察可以發現,以上數據分析流程實際上形成了一個閉環。總結匯報完畢,我們需要將得出的結論運用到實踐中,繼續觀察數據的變化並不斷優化我們的運營策略。

㈥ 完整的數據分析包括哪些步驟

完整的數據分析主要包括了六大步驟,它們依次為:分析設計、數據收集、數據處理、數據分析、數據展現、報告撰寫等,所以也叫數據分析六步曲。


①分析設計


首先是明確數據分析目的,只有明確目的,數據分析才不會偏離方向,否則得出的數據分析結果不僅沒有指導意義,亦即目的引導。


②數據收集


數據收集是按照確定的數據分析框架,收集相關數據的過程,它為數據分析提供了素材和依據。


③數據處理


數據處理是指對採集到的數據進行加工整理,形成適合數據分析的樣式,保證數據的一致性和有效性。它是數據分析前必不可少的階段。


④數據分析


數據分析是指用適當的分析方法及工具,對收集來的數據進行分析,提取有價值的信息,形成有效結論的過程。


⑤數據展現


一般情況下,數據是通過表格和圖形的方式來呈現的,即用圖表說話。


常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、散點圖、雷達圖等,當然可以對這些圖表進一步整理加工,使之變為我們所需要的圖形,例如金字塔圖、矩陣圖、瀑布圖、漏斗圖、帕雷托圖等。


⑥報告撰寫


數據分析報告其實是對整個數據分析過程的一個總結與呈現。通過報告,把數據分析的起因、過程、結果及建議完整地呈現出來,以供決策者參考。所以數據分析報告是通過對數據全方位的科學分析來評估企業運營質量,為決策者提供科學、嚴謹的決策依據,以降低企業運營風險,提高企業核心競爭力。

㈦ 數據分析有哪些流程

1.分析設計


首先是明確數據分析目的,只有明確目的,數據分析才不會偏離方向,否則得出的數據分析結果不僅沒有指導意義,亦即目的引導。當分析目的明確後,我們需要對思路進行梳理分析,並搭建分析框架,需要把分析目的分解成若干個不同的分析要點,也就是說要達到這個目的該如何具體開展數據分析?需要從哪幾個角度進行分析?採用哪些分析指標?採用哪些邏輯思維?運用哪些理論依據?


2.數據收集


數據收集是按照確定的數據分析框架,收集相關數據的過程,它為數據分析提供了素材和依據。這里的數據包括一手數據與二手數據,一手數據主要指可直接獲取的數據,如公司內部的資料庫、市場調查取得的數據等;二手數據主要指經過加工整理後得到的數據,如統計局在互聯網上發布的數據、公開出版物中的數據等。


3.數據處理


數據處理是指對採集到的數據進行加工整理,形成適合數據分析的樣式,保證數據的一致性和有效性。它是數據分析前必不可少的階段。數據處理的基本目的是從大量的、可能雜亂無章、難以理解的數據中抽取並推導出對解決問題有價值、有意義的數據。如果數據本身存在錯誤,那麼即使採用最先進的數據分析方法,得到的結果也是錯誤的,不具備任何參考價值,甚至還會誤導決策。


4.數據分析


數據分析是指用適當的分析方法及工具,對收集來的數據進行分析,提取有價值的信息,形成有效結論的過程。在確定數據分析思路階段,數據分析師就應當為需要分析的內容確定適合的數據分析方法。到了這個階段,就能夠駕馭數據,從容地進行分析和研究了。


5.數據展現


通過數據分析,隱藏在數據內部的關系和規律就會逐漸浮現出來,那麼通過什麼方式展現出這些關系和規律,才能讓別人一目瞭然。一般情況下,數據是通過表格和圖形的方式來呈現的,即用圖表說話。


6. 報告撰寫


數據分析報告其實是對整個數據分析過程的一個總結與呈現。通過報告,把數據分析的起因、過程、結果及建議完整地呈現出來,以供決策者參考。所以數據分析報告是通過對數據全方位的科學分析來評估企業運營質量,為決策者提供科學、嚴謹的決策依據,以降低企業運營風險,提高企業核心競爭力。

㈧ 數據分析的具體流程是什麼

一、數據收集


數據收集是數據分析的最基本操作,你要分析一個東西,首先就得把這個東西收集起來才行。由於現在數據採集的需求,一般有Flume、Logstash、Kibana等工具,它們都能通過簡單的配置完成復雜的數據收集和數據聚合。


二、數據預處理


收集好以後,我們需要對數據去做一些預處理。千萬不能一上來就用它做一些演算法和模型,這樣的出來的結果是不具備參考性的。數據預處理的原因就是因為很多數據有問題,比如說他遇到一個異常值(大家都是正的,突然蹦出個負值),或者說缺失值,我們都需要對這些數據進行預處理。


三、數據存儲


數據預處理之後,下一個問題就是:數據該如何進行存儲?通常大家最為熟知是MySQL、Oracle等傳統的關系型資料庫,它們的優點是能夠快速存儲結構化的數據,並支持隨機訪問。但大數據的數據結構通常是半結構化(如日誌數據)、甚至是非結構化的(如視頻、音頻數據),為了解決海量半結構化和非結構化數據的存儲,衍生了HadoopHDFS、KFS、GFS等分布式文件系統,它們都能夠支持結構化、半結構和非結構化數據的存儲,並可以通過增加機器進行橫向擴展。


四、數據分析


做數據分析有一個非常基礎但又極其重要的思路,那就是對比,基本上 90% 以上的分析都離不開對比。主要有:縱比、橫比、與經驗值對比、與業務目標對比等。


五、數據運用


其實也就是把數據結果通過不同的表和圖形,可視化展現出來。使人的感官更加的強烈。常見的數據可視化工具可以是excel,也可以用power BI系統。


六、總結分析


根據數據分析的結果和報告,提出切實可行的方案,幫助企業決策等。


關於數據分析的具體流程是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈨ 市場數據分析怎麼做

1.明確目的和思路


首先明白本次的目的,梳理分析思路,並搭建整體分析框架,把分析目的分解,化為若乾的點,清晰明了,即分析的目的,用戶什麼樣的,如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標(各類分析指標需合理搭配使用)。同時,確保分析框架的體系化和邏輯性。


2.數據收集


根據目的和需求,對數據分析的整體流程梳理,找到自己的數據源,進行數據分析,一般數據來源於四種方式:資料庫、第三方數據統計工具、專業的調研機構的統計年鑒或報告(如艾瑞資訊)、市場調查。


3.數據處理


數據收集就會有各種各樣的數據,有些是有效的有些是無用的,這時候我們就要根據目的,對數據進行處理,處理主要包括數據清洗、數據轉化、數據提取、數據計算等處理方法,將各種原始數據加工成為產品經理需要的直觀的可看數據。


4.數據分析


數據處理好之後,就要進行數據分析,數據分析是用適當的分析方法及工具,對處理過的數據進行分析,提取有價值的信息,形成有效結論的過程。


5.數據展現


一般情況下,數據是通過表格和圖形的方式來呈現的。常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、氣泡圖、散點圖、雷達圖等。進一步加工整理變成我們需要的圖形,如金字塔圖、矩陣圖、漏斗圖、帕雷托圖等。


6.報告撰寫


撰寫報告一定要圖文結合,清晰明了,框架一定要清楚,能夠讓閱讀者讀懂才行。結構清晰、主次分明可以使閱讀者正確理解報告內容;圖文並茂,可以令數據更加生動活潑,提高視覺沖擊力,有助於閱讀者更形象、直觀地看清楚問題和結論,從而產生思考。

㈩ 數據分析有哪些關鍵步驟

1.決定目標


數據價值鏈的第一步必須先有數據,然後業務部門已經決定數據科學團隊的目標。這些目標通常需要進行大量的數據收集和分析。因為我們正在研究數據驅動決策,我們需要一個可衡量的方式知道業務正向著目標前進。


2.確定業務標桿


業務應該做出改變來改善關鍵指標從而達到它們的目標。如果沒有什麼可以改變,就不可能有進步,,論多少數據被收集和分析。確定目標、指標在項目早期為項目提供了方向,避免無意義的數據分析。


3.數據收集


撒一張數據的大網,更多數據,特別是數據從不同渠道找到更好的相關性,建立更好的模型,找到更多可行的見解。大數據經濟意味著個人記錄往往是無用的,在每個記錄可供分析才可以提供真正的價值。


4.數據清洗


數據分析的第一步是提高數據質量。數據科學家處理正確的拼寫錯誤,處理缺失數據和清除無意義的信息。在數據價值鏈中這是最關鍵的步驟,即使最好的數據值分析如果有垃圾數據這將會產生錯誤結果和誤導。


5.數據建模


數據科學家構建模型,關聯數據與業務成果和提出建議並確定關於業務價值的變化這是其中的第一步。這就是數據科學家成為關鍵業務的獨特專長,通過數據,建立模型,預測業務成果。


6.數據科學團隊


數據科學家是出了名的難以僱用,這是一個好主意來構建一個數據科學團隊通過那些有一個高級學位統計關注數據建模和預測,而團隊的其他人,合格的基礎設施工程師,軟體開發人員和ETL 專家,建立必要的數據收集基礎設施、數據管道和數據產品,使數據通過報告和儀表盤來顯示結果和業務模型。


7.優化和重復


數據價值鏈是一個可重復的過程,通過連續改進價值鏈的業務和數據本身。基於模型的結果,企業將通過數據科學團隊測量的結果來驅動業務。

閱讀全文

與市場數據分析有哪些流程相關的資料

熱點內容
商丘哪裡有小家電批發市場 瀏覽:873
資料庫如何計算負數 瀏覽:61
開車技術不行怎麼考科三 瀏覽:950
拍產品圖片攝影棚怎麼調節 瀏覽:115
美團風控怎麼檢測異常數據 瀏覽:123
在期貨交易平台上取錢要多久 瀏覽:610
散戶債券怎麼交易 瀏覽:146
技術大比武怎麼練 瀏覽:740
eq在數控程序里什麼意思 瀏覽:130
小程序怎麼新建 瀏覽:354
今年5月上海有什麼交易會 瀏覽:687
恆生電子數據運營怎麼樣 瀏覽:818
中西信息時代的差異有哪些 瀏覽:771
張掖市哪裡招聘信息 瀏覽:149
keil如何編寫程序 瀏覽:260
做烤瓷牙有什麼程序 瀏覽:580
銳捷網路出去的程序員技術如何 瀏覽:549
抖音小店怎麼選極致產品 瀏覽:21
抖音新手賣農產品怎麼樣 瀏覽:97
信息技術類哪個適合女生 瀏覽:505