⑴ 現在常用的高解析度遙感衛星影像數據有哪些
常用的高解析度遙感衛星影像數據有以下:
1、國產的:高分系列的高分二號0.8m、高分一號2m、資源三號2.1m、資源三號02C 2.3m(這幾種國產高分辨影像數據都可以在遙感集市www.rscloudmart.com上找到)
2、國外的:美國的Planet遙感衛星3-5m、wordview0.5米等
這些高解析度遙感衛星影像數據可用於國土資源、住房和城鄉建設、交通運輸、 林業、 國際救災等領域,具體參考這篇介紹:http://bbs.rscloudmart.com/thread-679-1.html
⑵ 常用的遙感數字圖像處理系統有哪些
遙感圖像處理的硬體系統
圖4-5-1顯示了圖像處理的硬體系統的主要部件,它由以下幾部分構成:計算機、輸入設備、輸出設備、存儲設備以及系統操作台。
圖4-5-1遙感圖像處理的硬體系統
(1)計算機。計算機是遙感數字圖像處理系統的核心,對主機的選擇可以根據處理的規模來定。對於數據量特別大、處理速度要求很高的情況,應選擇大型及至巨型計算機。而對於一般的用戶而言,工作站和微機足夠滿足通常的遙感圖像處理的要求。特別是微機的發展,使得以前需要大型計算機完成的處理工作,微機就可勝任。
(2)輸入設備。遙感數字圖像處理系統常用輸入設備有磁帶機、磁碟機(包括光碟)、攝像機、膠片掃描儀、析像器、數字化儀等。
(3)輸出設備。遙感圖像處理系統常用的輸出設備有磁帶機、磁碟機(包括光碟)、膠片掃描儀、彩色顯示器、繪圖儀和各種類型的列印機等。
(4)存儲設備。由於遙感圖像數據量往往很大,因此遙感圖像處理系統中還需要有大容量的存儲設備。常見的存儲設備有軟盤、磁碟和磁帶,大容量的光碟現在也開始廣泛地用於遙感數據存儲。
(5)系統操作台。系統操作台是安置計算機、輸入設備、輸出設備及開展圖像處理時所需的輔助設備。良好的圖像處理環境,無疑對保證圖像質量會起到促進作用。但是,隨著微機的發展,操作台已逐漸消失,而代之以鍵盤和滑鼠及簡捷、實用的操作界面。操作終端與顯示設備合二為一。
⑶ 什麼是遙感常用的遙感平台有哪些
現在的遙感主要是航天遙感與航空遙感,以多波段的遙感數據為主,就像照相機拍出來的是RGB三個通道,三張圖片,常見的遙感通常會多出近紅外通道等等。
具體的平台衛星、飛機為搭載平台,還有數據處理平台如ENVI 與ERADAS等
⑷ 常用的遙感衛星數據有哪些
國內常用的遙感衛星有高分一號、高分二號和資源三號,這些衛星數據可以從地理國情監測雲平台上面查到。
⑸ 目前運行的主要遙感數據有哪些
國產衛星有:
環境與災害監測預報小衛星星座A、B星(HJ-1A /1B星)於2008年9月6日上午11點25分成功發射,HJ-1-A星搭載了CCD相機和超光譜成像儀(HSI),HJ-1-B星搭載了CCD相機和紅外相機(IRS)。在HJ-1-A衛星和HJ-1-B衛星上均裝載的兩台CCD相機設計原理完全相同,以星下點對稱放置,平分視場、並行觀測,聯合完成對地刈幅寬度為700公里、地面像元解析度為30米、4個譜段的推掃成像。此外,在HJ-1-A衛星裝載有一台超光譜成像儀,完成對地刈寬為50公里、地面像元解析度為100米、110~128個光譜譜段的推掃成像,具有±30°側視能力和星上定標功能。在HJ-1-B衛星上還裝載有一台紅外相機,完成對地幅寬為720公里、地面像元解析度為150米/300米、近短中長4個光譜譜段的成像。
中巴地球資源衛星是1988年中國和巴西兩國政府聯合議定書批准,由中、巴兩國共同投資,聯合研製的衛星(代號CBERS)。1999年10月14日,中巴地球資源衛星01星(CBERS-01)成功發射,在軌運行3年10個月;02星(CBERS-02)於2003年10月21日發射升空,目前仍在軌運行。
國產氣象衛星「風雲」系列。
「北京號」系列。
「嫦娥號」系列。
國外的衛星有:
Landsat, spot,QuickBird,modis,ikonos.noaa,cbers等。
⑹ 典型的遙感指數有哪些
歸一化差異濕度指數、歸一化差異雪指數、植被指數、建築指數等。
遙感指數(remote sensing)指的是非接觸的,遠距離的探測技術。一般指運用感測器/遙感器對物體的電磁波的輻射、反射特性的探測。遙感是通過遙感器這類對電磁波敏感的儀器,在遠離目標和非接觸目標物體條件下探測目標地物。
植被指數
利用衛星不同波段探測數據組合而成的,能反映植物生長狀況的指數。植物葉面在可見光紅光波段有很強的吸收特性,在近紅外波段有很強的反射特性,這是植被遙感監測利用衛星不同波段探測數據組合而成的,能反映植物生長狀況的指數。
植物葉面在可見光紅光波段有很強的吸收特性,在近紅外波段有很強的反射特性,這是植被遙感監測的物理基礎,通過這兩個波段測值的不同組合可得到不同的植被指數。差值植被指數又稱農業植被指數,為二通道反射率之差,它對土壤背景變化敏感,能較好地識別植被和水體。
⑺ 各種遙感數據分類方法比較
常用的遙感數據的專題分類方法有多種,從分類判別決策方法的角度可以分為統計分類器、神經網路分類器、專家系統分類器等;從是否需要訓練數據方面,又可以分為監督分類器和非監督分類器。
一、統計分類方法
統計分類方法分為非監督分類方法和監督分類方法。非監督分類方法不需要通過選取已知類別的像元進行分類器訓練,而監督分類方法則需要選取一定數量的已知類別的像元對分類器進行訓練,以估計分類器中的參數。非監督分類方法不需要任何先驗知識,也不會因訓練樣本選取而引入認為誤差,但非監督分類得到的自然類別常常和研究感興趣的類別不匹配。相應地,監督分類一般需要預先定義分類類別,訓練數據的選取可能會缺少代表性,但也可能在訓練過程中發現嚴重的分類錯誤。
1.非監督分類器
非監督分類方法一般為聚類演算法。最常用的聚類非監督分類方法是 K-均值(K-Means Algorithm)聚類方法(Duda and Hart,1973)和迭代自組織數據分析演算法(ISODATA)。其演算法描述可見於一般的統計模式識別文獻中。
一般通過簡單的聚類方法得到的分類結果精度較低,因此很少單獨使用聚類方法進行遙感數據專題分類。但是,通過對遙感數據進行聚類分析,可以初步了解各類別的分布,獲取最大似然監督分類中各類別的先驗概率。聚類分析最終的類別的均值矢量和協方差矩陣可以用於最大似然分類過程(Schowengerdt,1997)。
2.監督分類器
監督分類器是遙感數據專題分類中最常用的一種分類器。和非監督分類器相比,監督分類器需要選取一定數量的訓練數據對分類器進行訓練,估計分類器中的關鍵參數,然後用訓練後的分類器將像元劃分到各類別。監督分類過程一般包括定義分類類別、選擇訓練數據、訓練分類器和最終像元分類四個步驟(Richards,1997)。每一步都對最終分類的不確定性有顯著影響。
監督分類器又分為參數分類器和非參數分類器兩種。參數分類器要求待分類數據滿足一定的概率分布,而非參數分類器對數據的概率分布沒有要求。
遙感數據分類中常用的分類器有最大似然分類器、最小距離分類器、馬氏距離分類器、K-最近鄰分類器(K-Nearest neighborhood classifier,K-NN)以及平行六面體分類器(parallelepiped classifier)。最大似然、最小距離和馬氏距離分類器在第三章已經詳細介紹。這里簡要介紹 K-NN 分類器和平行六面體分類器。
K-NN分類器是一種非參數分類器。該分類器的決策規則是:將像元劃分到在特徵空間中與其特徵矢量最近的訓練數據特徵矢量所代表的類別(Schowengerdt,1997)。當分類器中 K=1時,稱為1-NN分類器,這時以離待分類像元最近的訓練數據的類別作為該像元的類別;當 K >1 時,以待分類像元的 K 個最近的訓練數據中像元數量最多的類別作為該像元的類別,也可以計算待分類像元與其 K 個近鄰像元特徵矢量的歐氏距離的倒數作為權重,以權重值最大的訓練數據的類別作為待分類像元的類別。Hardin,(1994)對 K-NN分類器進行了深入的討論。
平行六面體分類方法是一個簡單的非參數分類演算法。該方法通過計算訓練數據各波段直方圖的上限和下限確定各類別像元亮度值的范圍。對每一類別來說,其每個波段的上下限一起就形成了一個多維的盒子(box)或平行六面體(parallelepiped)。因此 M 個類別就有M 個平行六面體。當待分類像元的亮度值落在某一類別的平行六面體內時,該像元就被劃分為該平行六面體代表的類別。平行六面體分類器可以用圖5-1中兩波段的遙感數據分類問題來表示。圖中的橢圓表示從訓練數據估計的各類別亮度值分布,矩形表示各類別的亮度值范圍。像元的亮度落在哪個類別的亮度范圍內,就被劃分為哪個類別。
圖5-1 平行六面體分類方法示意圖
3.統計分類器的評價
各種統計分類器在遙感數據分類中的表現各不相同,這既與分類演算法有關,又與數據的統計分布特徵、訓練樣本的選取等因素有關。
非監督聚類演算法對分類數據的統計特徵沒有要求,但由於非監督分類方法沒有考慮任何先驗知識,一般分類精度比較低。更多情況下,聚類分析被作為非監督分類前的一個探索性分析,用於了解分類數據中各類別的分布和統計特徵,為監督分類中類別定義、訓練數據的選取以及最終的分類過程提供先驗知識。在實際應用中,一般用監督分類方法進行遙感數據分類。
最大似然分類方法是遙感數據分類中最常用的分類方法。最大似然分類屬於參數分類方法。在有足夠多的訓練樣本、一定的類別先驗概率分布的知識,且數據接近正態分布的條件下,最大似然分類被認為是分類精度最高的分類方法。但是當訓練數據較少時,均值和協方差參數估計的偏差會嚴重影響分類精度。Swain and Davis(1978)認為,在N維光譜空間的最大似然分類中,每一類別的訓練數據樣本至少應該達到10×N個,在可能的條件下,最好能達到100×N以上。而且,在許多情況下,遙感數據的統計分布不滿足正態分布的假設,也難以確定各類別的先驗概率。
最小距離分類器可以認為是在不考慮協方差矩陣時的最大似然分類方法。當訓練樣本較少時,對均值的估計精度一般要高於對協方差矩陣的估計。因此,在有限的訓練樣本條件下,可以只估計訓練樣本的均值而不計算協方差矩陣。這樣最大似然演算法就退化為最小距離演算法。由於沒有考慮數據的協方差,類別的概率分布是對稱的,而且各類別的光譜特徵分布的方差被認為是相等的。很顯然,當有足夠訓練樣本保證協方差矩陣的精確估計時,最大似然分類結果精度要高於最小距離精度。然而,在訓練數據較少時,最小距離分類精度可能比最大似然分類精度高(Richards,1993)。而且最小距離演算法對數據概率分布特徵沒有要求。
馬氏距離分類器可以認為是在各類別的協方差矩陣相等時的最大似然分類。由於假定各類別的協方差矩陣相等,和最大似然方法相比,它丟失了各類別之間協方差矩陣的差異的信息,但和最小距離法相比較,它通過協方差矩陣保持了一定的方向靈敏性(Richards,1993)。因此,馬氏距離分類器可以認為是介於最大似然和最小距離分類器之間的一種分類器。與最大似然分類一樣,馬氏距離分類器要求數據服從正態分布。
K-NN分類器的一個主要問題是需要很大的訓練數據集以保證分類演算法收斂(Devijver and Kittler,1982)。K-NN分類器的另一個問題是,訓練樣本選取的誤差對分類結果有很大的影響(Cortijo and Blanca,1997)。同時,K-NN分類器的計算復雜性隨著最近鄰范圍的擴大而增加。但由於 K-NN分類器考慮了像元鄰域上的空間關系,和其他光譜分類器相比,分類結果中「椒鹽現象」較少。
平行六面體分類方法的優點在於簡單,運算速度快,且不依賴於任何概率分布要求。它的缺陷在於:首先,落在所有類別亮度值范圍之外的像元只能被分類為未知類別;其次,落在各類別亮度范圍重疊區域內的像元難以區分其類別(如圖5-1所示)。
各種統計分類方法的特點可以總結為表5-1。
二、神經網路分類器
神經網路用於遙感數據分類的最大優勢在於它平等地對待多源輸入數據的能力,即使這些輸入數據具有完全不同的統計分布,但是由於神經網路內部各層大量的神經元之間連接的權重是不透明的,因此用戶難以控制(Austin,Harding and Kanellopoulos et al.,1997)。
神經網路遙感數據分類被認為是遙感數據分類的熱點研究領域之一(Wilkinson,1996;Kimes,1998)。神經網路分類器也可分為監督分類器和非監督分類器兩種。由於神經網路分類器對分類數據的統計分布沒有任何要求,因此神經網路分類器屬於非參數分類器。
遙感數據分類中最常用的神經網路是多層感知器模型(multi-layer percep-tron,MLP)。該模型的網路結構如圖5-2所示。該網路包括三層:輸入層、隱層和輸出層。輸入層主要作為輸入數據和神經網路輸入界面,其本身沒有處理功能;隱層和輸出層的處理能力包含在各個結點中。輸入的結構一般為待分類數據的特徵矢量,一般情況下,為訓練像元的多光譜矢量,每個結點代表一個光譜波段。當然,輸入結點也可以為像元的空間上下文信息(如紋理)等,或多時段的光譜矢量(Paola and Schowengerdt,1995)。
表5-1 各種統計分類器比較
圖5-2 多層感知器神經網路結構
對於隱層和輸出層的結點來說,其處理過程是一個激勵函數(activation function)。假設激勵函數為f(S),對隱層結點來說,有:
遙感信息的不確定性研究
其中,pi為隱層結點的輸入;hj為隱層結點的輸出;w為聯接各層神經之間的權重。
對輸出層來說,有如下關系:
遙感信息的不確定性研究
其中,hj為輸出層的輸入;ok為輸出層的輸出。
激勵函數一般表達為:
遙感信息的不確定性研究
確定了網路結構後,就要對網路進行訓練,使網路具有根據新的輸入數據預測輸出結果的能力。最常用的是後向傳播訓練演算法(Back-Propagation)。這一演算法將訓練數據從輸入層進入網路,隨機產生各結點連接權重,按式(5-1)(5-2)和(5-3)中的公式進行計算,將網路輸出與預期的結果(訓練數據的類別)相比較並計算誤差。這個誤差被後向傳播的網路並用於調整結點間的連接權重。調整連接權重的方法一般為delta規則(Rumelhart,et al.,1986):
遙感信息的不確定性研究
其中,η為學習率(learning rate);δk為誤差變化率;α為動量參數。
將這樣的數據的前向和誤差後向傳播過程不斷迭代,直到網路誤差減小到預設的水平,網路訓練結束。這時就可以將待分類數據輸入神經網路進行分類。
除了多層感知器神經網路模型,其他結構的網路模型也被用於遙感數據分類。例如,Kohonen自組織網路被廣泛用於遙感數據的非監督聚類分析(Yoshida et al.,1994;Schaale et al.,1995);自適應共振理論(Adaptive Resonance Theory)網路(Silva,S and Caetano,M.1997)、模糊ART圖(Fuzzy ART Maps)(Fischer,M.M and Gopal,S,1997)、徑向基函數(駱劍承,1999)等也被用於遙感數據分類。
許多因素影響神經網路的遙感數據分類精度。Foody and Arora(1997)認為神經網路結構、遙感數據的維數以及訓練數據的大小是影響神經網路分類的重要因素。
神經網路結構,特別是網路的層數和各層神經元的數量是神經網路設計最關鍵的問題。網路結構不但影響分類精度,而且對網路訓練時間有直接影響(Kavzoglu and Mather,1999)。對用於遙感數據分類的神經網路來說,由於輸入層和輸出層的神經元數目分別由遙感數據的特徵維數和總的類別數決定的,因此網路結構的設計主要解決隱層的數目和隱層的神經元數目。一般過於復雜的網路結構在刻畫訓練數據方面較好,但分類精度較低,即「過度擬合」現象(over-fit)。而過於簡單的網路結構由於不能很好的學習訓練數據中的模式,因此分類精度低。
網路結構一般是通過實驗的方法來確定。Hirose等(1991)提出了一種方法。該方法從一個小的網路結構開始訓練,每次網路訓練陷入局部最優時,增加一個隱層神經元,然後再訓練,如此反復,直到網路訓練收斂。這種方法可能導致網路結構過於復雜。一種解決辦法是每當認為網路收斂時,減去最近一次加入的神經元,直到網路不再收斂,那麼最後一次收斂的網路被認為是最優結構。這種方法的缺點是非常耗時。「剪枝法」(pruning)是另一種確定神經網路結構的方法。和Hirose等(1991)的方法不同,「剪枝法」從一個很大的網路結構開始,然後逐步去掉認為多餘的神經元(Sietsma and Dow,1988)。從一個大的網路開始的優點是,網路學習速度快,對初始條件和學習參數不敏感。「剪枝」過程不斷重復,直到網路不再收斂時,最後一次收斂的網路被認為最優(Castellano,Fanelli and Pelillo,1997)。
神經網路訓練需要訓練數據樣本的多少隨不同的網路結構、類別的多少等因素變化。但是,基本要求是訓練數據能夠充分描述代表性的類別。Foody等(1995)認為訓練數據的大小對遙感分類精度有顯著影響,但和統計分類器相比,神經網路的訓練數據可以比較少。
分類變數的數據維對分類精度的影響是遙感數據分類中的普遍問題。許多研究表明,一般類別之間的可分性和最終的分類精度會隨著數據維數的增大而增高,達到某一點後,分類精度會隨數據維的繼續增大而降低(Shahshahani and Landgrebe,1994)。這就是有名的Hughes 現象。一般需要通過特徵選擇去掉信息相關性高的波段或通過主成分分析方法去掉冗餘信息。分類數據的維數對神經網路分類的精度同樣有明顯影響(Battiti,1994),但Hughes 現象沒有傳統統計分類器中嚴重(Foody and Arora,1997)。
Kanellopoulos(1997)通過長期的實踐認為一個有效的ANN模型應考慮以下幾點:合適的神經網路結構、優化學習演算法、輸入數據的預處理、避免振盪、採用混合分類方法。其中混合模型包括多種ANN模型的混合、ANN與傳統分類器的混合、ANN與知識處理器的混合等。
三、其他分類器
除了上述統計分類器和神經網路分類器,還有多種分類器被用於遙感圖像分類。例如模糊分類器,它是針對地面類別變化連續而沒有明顯邊界情況下的一種分類器。它通過模糊推理機制確定像元屬於每一個類別的模糊隸屬度。一般的模糊分類器有模糊C均值聚類法、監督模糊分類方法(Wang,1990)、混合像元模型(Foody and Cox,1994;Settle and Drake,1993)以及各種人工神經網路方法等(Kanellopoulos et al.,1992;Paola and Schowengerdt,1995)。由於模糊分類的結果是像元屬於每個類別的模糊隸屬度,因此也稱其為「軟分類器」,而將傳統的分類方法稱為「硬分類器」。
另一類是上下文分類器(contextual classifier),它是一種綜合考慮圖像光譜和空間特徵的分類器。一般的光譜分類器只是考慮像元的光譜特徵。但是,在遙感圖像中,相鄰的像元之間一般具有空間自相關性。空間自相關程度強的像元一般更可能屬於同一個類別。同時考慮像元的光譜特徵和空間特徵可以提高圖像分類精度,並可以減少分類結果中的「椒鹽現象」。當類別之間的光譜空間具有重疊時,這種現象會更明顯(Cortijo et al.,1995)。這種「椒鹽現象」可以通過分類的後處理濾波消除,也可以通過在分類過程中加入代表像元鄰域關系的信息解決。
在分類過程中可以通過不同方式加入上下文信息。一是在分類特徵中加入圖像紋理信息;另一種是圖像分割技術,包括區域增長/合並常用演算法(Ketting and Landgrebe,1976)、邊緣檢測方法、馬爾可夫隨機場方法。Rignot and Chellappa(1992)用馬爾可夫隨機場方法進行SAR圖像分類,取得了很好的效果,Paul Smits(1997)提出了保持邊緣細節的馬爾可夫隨機場方法,並用於SAR圖像的分類;Crawford(1998)將層次分類方法和馬爾可夫隨機場方法結合進行SAR圖像分類,得到了更高的精度;Cortijo(1997)用非參數光譜分類對遙感圖像分類,然後用ICM演算法對初始分類進行上下文校正。
⑻ 遙感數據種類
在區域地質調查中,應用遙感技術經歷了從黑白航空相片目視解譯到廣泛應用多平台多感測器航空航天遙感各種信息的過程。目前隨著感測器系統的探測能力、質量、品種和解析度的大大提高,可供遙感地質應用的航空航天遙感數據越來越多,其應用領域也不斷擴大,遙感數據處理、解譯、成果和交流也正在逐漸向數字化和自動化方向發展。在中小比例尺的區域遙感地質調查中,已形成了以航天遙感數據為主,地面解析度高的航空遙感為重要補充的技術格局;同時,遙感技術與地質、物化探等地學學科,以及其他領域的某些新技術、新方法(如GIS、GPS等)緊密融合,使區域地質調查中的遙感應用成為多學科、多技術互相滲透的綜合應用體系。
目前國內使用的星載多光譜遙感系統主要為表1-1所列。
表1-1 目前常用的星載遙感技術系統
⑼ 遙感的類型有哪些
遙感技術的類型往往從三個方面對其進行劃分:
1。根據工作平台層面區分:地面遙感、航空遙感(氣球、飛機)、航天遙感(人造衛星、飛船)。
2。根據工作波段層面區分:紫外遙感、可見光遙感、紅外遙感、微波遙感、多波段遙感。
3。根據感測器類型層面區分:主動遙感(微波雷達)、被動遙感(航空航天、衛星)。
⑽ 目前流行的光學遙感數據有哪些有哪些特徵
在紫外至紅外光學波段內,遠距離獲取目標和環境信息的技術。
光學遙感系統通常由遙感器、遙感平台、信息傳輸和信息處理設備等組成。
軍事上主要用於偵察、監視、導彈預警和氣象預報等。