A. 代理工業機器人的利潤
省會城市加盟工業機器人需要投資:24.84萬元,年凈利潤預計:62.64萬元。地級城市加盟工業機器人需要投資:21.89萬元,年凈利潤預計:56.76萬元。縣級城市加盟工業機器人需要投資:18.84萬元,年凈利潤預計:50.88萬元。
B. 有關機器人的信息
機器人(Robot)是自動執行工作的機器裝置。它既可以接受人類指揮,又可以運行預先編排的程序,也可以根據以人工智慧技術制定的原則綱領行動。它的任務是協助或取代人類工作的工作,例如生產業、建築業,或是危險的工作。
詞語釋義
字義
robot
名詞 n. [C]
1.機器人;自動控制裝置;遙控裝置
2.機械呆板的人,機器般工作的
本田公司ASIMO機器人
它是高級整合控制論、機械電子、計算機、材料和仿生學的產物。在工業、醫學、農業、建築業甚至軍事等領域中均有重要用途。
國際上對機器人的概念已經逐漸趨近一致。一般來說,人們都可以接受這種說法,即機器人是靠自身動力和控制能力來實現各種功能的一種機器。聯合國標准化組織採納了美國機器人協會給機器人下的定義:「一種可編程和多功能的操作機;或是為了執行不同的任務而具有可用電腦改變和可編程動作的專門系統。」它能為人類帶來許多方便之處!
robot,原為robo,意為奴隸,即人類的僕人。作家羅伯特創造的詞彙。
組成部分
機器人一般由執行機構、驅動裝置、檢測裝置和控制系統和復雜機械等組成。
執行機構
機器人高科技產物 (18張)
即機器人本體,其臂部一般採用空間開鏈連桿機構,其中的運動副(轉動副或移動副)常稱為關節,關節個數通常即為機器人的自由度數。根據關節配置型式和運動坐標形式的不同,機器人執行機構可分為直角坐標式、圓柱坐標式、極坐標式和關節坐標式等類型。出於擬人化的考慮,常將機器人本體的有關部位分別稱為基座、腰部、臂部、腕部、手部(夾持器或末端執行器)和行走部(對於移動機器人)等。
驅動裝置
是驅使執行機構運動的機構,按照控制系統發出的指令信號,藉助於動力元件使機器人進行動作。它輸入的是電信號,輸出的是線、角位移量。機器人使用的驅動裝置主要是電力驅動裝置,如步進電機、伺服電機等,此外也有採用液壓、氣動等驅動裝置。
檢測裝置
是實時檢測機器人的運動及工作情況,根據需要反饋給控制系統,與設定信息進行比較後,對執行機構進行調整,以保證機器人的動作符合預定的要求。作為檢測裝置的感測器大致可以分為兩類:一類是內部信息感測器,用於檢測機器人各部分的內部狀況,如各關節的位置、速度、加速度等,並將所測得的信息作為反饋信號送至控制器,形成閉環控制。一類是外部信息感測器,用於獲取有關機器人的作業對象及外界環境等方面的信息,以使機器人的動作能適應外界情況的變化,使之達到更高層次的自動化,甚至使機器人具有某種「感覺」,向智能化發展,例如視覺、聲覺等外部感測器給出工作對象、工作環境的有關信息,利用這些信息構成一個大的反饋迴路,從而將大大提高機器人的工作精度。
控制系統
一種是集中式控制,即機器人的全部控制由一台微型計算機完成。另一種是分散(級)式控制,即採用多台微機來分擔機器人的控制,如當採用上、下兩級微機共同完成機器人的控制時,主機常用於負責系統的管理、通訊、運動學和動力學計算,並向下級微機發送指令信息;作為下級從機,各關節分別對應一個CPU,進行插補運算和伺服控制處理,實現給定的運動,並向主機反饋信息。根據作業任務要求的不同,機器人的控制方式又可分為點位控制、連續軌跡控制和力(力矩)控制。
分類情況
誕生於科幻小說之中一樣,人們對機器人充滿了幻想。也許正是由於機器人定義的模糊,才給了人們充分的想像和創造空間。
中國的機器人專家從應用環境出發,將機器人分為兩大類,即工業機器人和特種機器人。所謂工業機器人就是面向工業領域的多關節機械手或多自由度機器人。而特種機器人則是除工業機器人之外的、用於非製造業並服務於人類的各種先進機器人,包括:服務機器人、水下機器人、娛樂機器人、軍用機器人、農業機器人、機器人化機器等。在特種機器人中,有些分支發展很快,有獨立成體系的趨勢,如服務機器人、水下機器人、軍用機器人、微操作機器人等。國際上的機器人學者,從應用環境出發將機器人也分為兩類:製造環境下的工業機器人和非製造環境下的服務與仿人型機器人,這和中國的分類是一致的。
空中機器人又叫無人機器,在軍用機器人家族中,無人機是科研活動最活躍、技術進步最大、研究及采購經費投入最多、實戰經驗最豐富的領域。80多年來,世界無人機的發展基本上是以美國為主線向前推進的,無論從技術水平還是無人機的種類和數量來看,美國均居世界之首位。
家務型
能幫助人們打理生活,做簡單的家務活。
操作型
能自動控制,可重復編程,多功能,有幾個自由度,可固定或運動,用於相關自動化系統中。
程式控制型
預先要求的順序及條件,依次控制機器人的機械動作。
數控型
不必使機器人動作,通過數值、語言等對機器人進行示教,機器人根據示教後的信息進行作業。
搜救類
在大型災難後,能進入人進入不了的廢墟中,用紅外線掃描廢墟中的景象,把信息傳送給在外面的搜救人員。
示教再現型
通過引導或其它方式,先教會機器人動作,輸入工作程序,機器人則自動重復進行作業。
感覺控制型
利用感測器獲取的信息控制機器人的動作。
適應控制型
能適應環境的變化,控制其自身的行動。
學習控制型
能「體會」工作的經驗,具有一定的學習功能,並將所「學」的經驗用於工作中。
智能
以人工智慧決定其行動的機器人。
能力評價
機器人能力的評價標准包括:智能,指感覺和感知,包括記憶、運算、比較、鑒別、判斷、決策、學習和邏輯推理等;機能,指變通性、通用性或空間佔有性等;物理能,指力、速度、可靠性、聯用性和壽命等。因此,可以說機器人就是具有生物功能的實際空間運行工具,可以代替人類完成一些危險或難以進行的勞作、任務等。
展會競賽
序號
名稱
周期
國家/地區
1
RoboCup(機器人世界盃)
2年
國際
2
WRO(國際機器人奧林匹克競賽)
1年
國際
3
IREX(日該國際機器人展)
1年
日本
4
TIROS(台北國際機器人展)
1年
台灣
5
Loebner
1年
國際
發展歷史
智能型機器人是最復雜的機器人,也是人類最渴望能夠早日製造出來的機器朋友。然而要製造出一台智能機器人並不容易,僅僅是讓機器模擬人類的行走動作,科學家們就要付出了數十甚至上百年的努力。
索尼公司QRIO機器人
1910年 捷克斯洛伐克作家卡雷爾·恰佩克在他的科幻小說中,根據Robota(捷克文,原意為「勞役、苦工」)和Robotnik(波蘭文,原意為「工人」),創造出「機器人」這個詞。
1911年 美國紐約世博會上展出了西屋電氣公司製造的家用機器人Elektro。它由電纜控制,可以行走,會說77個字,甚至可以抽煙,不過離真正幹家務活還差得遠。但它讓人們對家用機器人的憧憬變得更加具體。
1912年 美國科幻巨匠阿西莫夫提出「機器人三定律」。雖然這只是科幻小說里的創造,但後來成為學術界默認的研發原則。
1913年 諾伯特·維納出版《控制論——關於在動物和機中控制和通訊的科學》,闡述了機器中的通信和控制機能與人的神經、感覺機能的共同規律,率先提出以計算機為核心的自動化工廠。
1915年 在達特茅斯會議上,馬文·明斯基提出了他對智能機器的看法:智能機器「能夠創建周圍環境的抽象模型,如果遇到問題,能夠從抽象模型中尋找解決方法」。這個定義影響到以後30年智能機器人的研究方向。
1954年 美國人喬治·德沃爾製造出世界上第一台可編程的機器人,並注冊了專利。這種機械手能按照不同的程序從事不同的工作,因此具有通用性和靈活性。[1]
1959年 德沃爾與美國發明家約瑟夫·英格伯格聯手製造出第一台工業機器人。隨後,成立了世界上第一家機器人製造工廠——Unimation公司。由於英格伯格對工業機器人的研發和宣傳,他也被稱為「工業機器人之父」。
索尼公司AIBO機器人
1962年 美國AMF公司生產出「VERSTRAN」(意思是萬能搬運),與Unimation公司生產的Unimate一樣成為真正商業化的工業機器人,並出口到世界各國,掀起了全世界對機器人和機器人研究的熱潮。
1962年-1963年 感測器的應用提高了機器人的可操作性。人們試著在機器人上安裝各種各樣的感測器,包括1961年恩斯特採用的觸覺感測器,托莫維奇和博尼1962年在世界上最早的「靈巧手」上用到了壓力感測器,而麥卡錫1963年則開始在機器人中加入視覺感測系統,並在1964年,幫助MIT推出了世界上第一個帶有視覺感測器,能識別並定位積木的機器人系統。
1965年 約翰·霍普金斯大學應用物理實驗室研製出Beast機器人。Beast已經能通過聲吶系統、光電管等裝置,根據環境校正自己的位置。20世紀60年代中期開始,美國麻省理工學院、斯坦福大學、英國愛丁堡大學等陸續成立了機器人實驗室。美國興起研究第二代帶感測器、「有感覺」的機器人,並向人工智慧進發。
1968年 美國斯坦福研究所公布他們研發成功的機器人Shakey。它帶有視覺感測器,能根據人的指令發現並抓取積木,不過控制它的計算機有一個房間那麼大。Shakey可以算是世界第一台智能機器人,拉開了第三代機器人研發的序幕。
1969年 日本早稻田大學加藤一郎實驗室研發出第一台以雙腳走路的機器人。加藤一郎長期致力於研究仿人機器人,被譽為「仿人機器人之父」。日本專家一向以研發仿人機器人和娛樂機器人的技術見長,後來更進一步,催生出本田公司的ASIMO和索尼公司的QRIO。
1973年 世界上第一次機器人和小型計算機攜手合作,就誕生了美國Cincinnati Milacron公司的機器人T3。
1978年 美國Unimation公司推出通用工業機器人PUMA,這標志著工業機器人技術已經完全成熟。PUMA至今仍然工作在工廠第一線。
1984年 英格伯格再推機器人Helpmate,這種機器人能在醫院里為病人送飯、送葯、送郵件。同年,他還預言:「我要讓機器人擦地板,做飯,出去幫我洗車,檢查安全」。
模擬交際機器人
1990年 中國著名學者周海中教授在《論機器人》一文中預言:到二十一世紀中葉,納米機器人將徹底改變人類的勞動和生活方式。
1998年 丹麥樂高公司推出機器人(Mind-storms)套件,讓機器人製造變得跟搭積木一樣,相對簡單又能任意拼裝,使機器人開始走入個人世界。
1999年 日本索尼公司推出犬型機器人愛寶(AIBO),當即銷售一空,從此娛樂機器人成為機器人邁進普通家庭的途徑之一。
2002年 美國iRobot公司推出了吸塵器機器人Roomba,它能避開障礙,自動設計行進路線,還能在電量不足時,自動駛向充電座。Roomba是目前世界上銷量最大、最商業化的家用機器人。iRobot公司北京區授權代理商:北京微網智宏科技有限公司。
2006年 6月,微軟公司推出Microsoft Robotics Studio,機器人模塊化、平台統一化的趨勢越來越明顯,比爾·蓋茨預言,家用機器人很快將席捲全球。
發展特點
如今機器人發展的特點可概括為:橫向上,應用面越來越寬。由95%的工業應用擴展到更多領域的非工業應用。像做手術、採摘水果、剪枝、巷道掘進、偵查、排雷,還有空間機器人、潛海機器人。機器人應用無限制,只要能想到的,就可以去創造實現;縱向上,機器人的種類會越來越多,像進入人體的微型機器人,已成為一個新方向,可以小到像一個米粒般大小;機器人智能化得到加強,機器人會更加聰明。